MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgsplit Structured version   Visualization version   Unicode version

Theorem ditgsplit 23625
Description: This theorem is the raison d'être for the directed integral, because unlike itgspliticc 23603, there is no constraint on the ordering of the points  A ,  B ,  C in the domain. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgsplit.x  |-  ( ph  ->  X  e.  RR )
ditgsplit.y  |-  ( ph  ->  Y  e.  RR )
ditgsplit.a  |-  ( ph  ->  A  e.  ( X [,] Y ) )
ditgsplit.b  |-  ( ph  ->  B  e.  ( X [,] Y ) )
ditgsplit.c  |-  ( ph  ->  C  e.  ( X [,] Y ) )
ditgsplit.d  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  D  e.  V )
ditgsplit.i  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  L^1 )
Assertion
Ref Expression
ditgsplit  |-  ( ph  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
Distinct variable groups:    x, A    x, B    x, C    ph, x    x, V    x, X    x, Y
Allowed substitution hint:    D( x)

Proof of Theorem ditgsplit
StepHypRef Expression
1 ditgsplit.a . . . 4  |-  ( ph  ->  A  e.  ( X [,] Y ) )
2 ditgsplit.x . . . . 5  |-  ( ph  ->  X  e.  RR )
3 ditgsplit.y . . . . 5  |-  ( ph  ->  Y  e.  RR )
4 elicc2 12238 . . . . 5  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
52, 3, 4syl2anc 693 . . . 4  |-  ( ph  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
61, 5mpbid 222 . . 3  |-  ( ph  ->  ( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) )
76simp1d 1073 . 2  |-  ( ph  ->  A  e.  RR )
8 ditgsplit.b . . . 4  |-  ( ph  ->  B  e.  ( X [,] Y ) )
9 elicc2 12238 . . . . 5  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
102, 3, 9syl2anc 693 . . . 4  |-  ( ph  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
118, 10mpbid 222 . . 3  |-  ( ph  ->  ( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) )
1211simp1d 1073 . 2  |-  ( ph  ->  B  e.  RR )
137adantr 481 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  A  e.  RR )
14 ditgsplit.c . . . . . 6  |-  ( ph  ->  C  e.  ( X [,] Y ) )
15 elicc2 12238 . . . . . . 7  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( C  e.  ( X [,] Y )  <-> 
( C  e.  RR  /\  X  <_  C  /\  C  <_  Y ) ) )
162, 3, 15syl2anc 693 . . . . . 6  |-  ( ph  ->  ( C  e.  ( X [,] Y )  <-> 
( C  e.  RR  /\  X  <_  C  /\  C  <_  Y ) ) )
1714, 16mpbid 222 . . . . 5  |-  ( ph  ->  ( C  e.  RR  /\  X  <_  C  /\  C  <_  Y ) )
1817simp1d 1073 . . . 4  |-  ( ph  ->  C  e.  RR )
1918adantr 481 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  C  e.  RR )
2012ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  ->  B  e.  RR )
2118ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  ->  C  e.  RR )
22 ditgsplit.d . . . . . 6  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  D  e.  V )
23 ditgsplit.i . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  L^1 )
24 biid 251 . . . . . 6  |-  ( ( A  <_  B  /\  B  <_  C )  <->  ( A  <_  B  /\  B  <_  C ) )
252, 3, 1, 8, 14, 22, 23, 24ditgsplitlem 23624 . . . . 5  |-  ( ( ( ph  /\  A  <_  B )  /\  B  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
2625adantlr 751 . . . 4  |-  ( ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  /\  B  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
27 biid 251 . . . . . . . 8  |-  ( ( A  <_  C  /\  C  <_  B )  <->  ( A  <_  C  /\  C  <_  B ) )
282, 3, 1, 14, 8, 22, 23, 27ditgsplitlem 23624 . . . . . . 7  |-  ( ( ( ph  /\  A  <_  C )  /\  C  <_  B )  ->  S__ [ A  ->  B ] D  _d x  =  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x ) )
2928oveq1d 6665 . . . . . 6  |-  ( ( ( ph  /\  A  <_  C )  /\  C  <_  B )  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x ) )
302, 3, 1, 14, 22, 23ditgcl 23622 . . . . . . . . 9  |-  ( ph  ->  S__ [ A  ->  C ] D  _d x  e.  CC )
312, 3, 14, 8, 22, 23ditgcl 23622 . . . . . . . . 9  |-  ( ph  ->  S__ [ C  ->  B ] D  _d x  e.  CC )
322, 3, 8, 14, 22, 23ditgcl 23622 . . . . . . . . 9  |-  ( ph  ->  S__ [ B  ->  C ] D  _d x  e.  CC )
3330, 31, 32addassd 10062 . . . . . . . 8  |-  ( ph  ->  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  ( S__
[ A  ->  C ] D  _d x  +  ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) ) )
342, 3, 14, 8, 22, 23ditgswap 23623 . . . . . . . . . . 11  |-  ( ph  ->  S__ [ B  ->  C ] D  _d x  =  -u S__ [ C  ->  B ] D  _d x )
3534oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( S__ [ C  ->  B ] D  _d x  +  -u S__ [ C  ->  B ] D  _d x ) )
3631negidd 10382 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  -u S__ [ C  ->  B ] D  _d x )  =  0 )
3735, 36eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  0 )
3837oveq2d 6666 . . . . . . . 8  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  ( S__
[ C  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )  =  ( S__ [ A  ->  C ] D  _d x  +  0 ) )
3930addid1d 10236 . . . . . . . 8  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  0 )  =  S__ [ A  ->  C ] D  _d x )
4033, 38, 393eqtrd 2660 . . . . . . 7  |-  ( ph  ->  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
4140ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  A  <_  C )  /\  C  <_  B )  ->  (
( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
4229, 41eqtr2d 2657 . . . . 5  |-  ( ( ( ph  /\  A  <_  C )  /\  C  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
4342adantllr 755 . . . 4  |-  ( ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  /\  C  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
4420, 21, 26, 43lecasei 10143 . . 3  |-  ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
4540ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  (
( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
46 ancom 466 . . . . . . . 8  |-  ( ( A  <_  B  /\  C  <_  A )  <->  ( C  <_  A  /\  A  <_  B ) )
472, 3, 14, 1, 8, 22, 23, 46ditgsplitlem 23624 . . . . . . 7  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  S__ [ C  ->  B ] D  _d x  =  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )
4847oveq2d 6666 . . . . . 6  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  =  ( S__
[ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) ) )
492, 3, 1, 14, 22, 23ditgswap 23623 . . . . . . . . . . 11  |-  ( ph  ->  S__ [ C  ->  A ] D  _d x  =  -u S__ [ A  ->  C ] D  _d x )
5049oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  =  ( S__ [ A  ->  C ] D  _d x  +  -u S__ [ A  ->  C ] D  _d x ) )
5130negidd 10382 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  -u S__ [ A  ->  C ] D  _d x )  =  0 )
5250, 51eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  =  0 )
5352oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  ( 0  +  S__ [ A  ->  B ] D  _d x ) )
542, 3, 14, 1, 22, 23ditgcl 23622 . . . . . . . . 9  |-  ( ph  ->  S__ [ C  ->  A ] D  _d x  e.  CC )
552, 3, 1, 8, 22, 23ditgcl 23622 . . . . . . . . 9  |-  ( ph  ->  S__ [ A  ->  B ] D  _d x  e.  CC )
5630, 54, 55addassd 10062 . . . . . . . 8  |-  ( ph  ->  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  ( S__
[ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) ) )
5755addid2d 10237 . . . . . . . 8  |-  ( ph  ->  ( 0  +  S__ [ A  ->  B ] D  _d x )  =  S__ [ A  ->  B ] D  _d x )
5853, 56, 573eqtr3d 2664 . . . . . . 7  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  ( S__
[ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )  =  S__
[ A  ->  B ] D  _d x
)
5958ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  ( S__ [ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )  =  S__ [ A  ->  B ] D  _d x )
6048, 59eqtrd 2656 . . . . 5  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  =  S__ [ A  ->  B ] D  _d x )
6160oveq1d 6665 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  (
( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
6245, 61eqtr3d 2658 . . 3  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
6313, 19, 44, 62lecasei 10143 . 2  |-  ( (
ph  /\  A  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__
[ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
647adantr 481 . . 3  |-  ( (
ph  /\  B  <_  A )  ->  A  e.  RR )
6518adantr 481 . . 3  |-  ( (
ph  /\  B  <_  A )  ->  C  e.  RR )
66 biid 251 . . . . . 6  |-  ( ( B  <_  A  /\  A  <_  C )  <->  ( B  <_  A  /\  A  <_  C ) )
672, 3, 8, 1, 14, 22, 23, 66ditgsplitlem 23624 . . . . 5  |-  ( ( ( ph  /\  B  <_  A )  /\  A  <_  C )  ->  S__ [ B  ->  C ] D  _d x  =  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )
6867oveq2d 6666 . . . 4  |-  ( ( ( ph  /\  B  <_  A )  /\  A  <_  C )  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( S__
[ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) ) )
692, 3, 1, 8, 22, 23ditgswap 23623 . . . . . . . . 9  |-  ( ph  ->  S__ [ B  ->  A ] D  _d x  =  -u S__ [ A  ->  B ] D  _d x )
7069oveq2d 6666 . . . . . . . 8  |-  ( ph  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  =  ( S__ [ A  ->  B ] D  _d x  +  -u S__ [ A  ->  B ] D  _d x ) )
7155negidd 10382 . . . . . . . 8  |-  ( ph  ->  ( S__ [ A  ->  B ] D  _d x  +  -u S__ [ A  ->  B ] D  _d x )  =  0 )
7270, 71eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  =  0 )
7372oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  ( 0  +  S__ [ A  ->  C ] D  _d x ) )
742, 3, 8, 1, 22, 23ditgcl 23622 . . . . . . 7  |-  ( ph  ->  S__ [ B  ->  A ] D  _d x  e.  CC )
7555, 74, 30addassd 10062 . . . . . 6  |-  ( ph  ->  ( ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  ( S__
[ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) ) )
7630addid2d 10237 . . . . . 6  |-  ( ph  ->  ( 0  +  S__ [ A  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
7773, 75, 763eqtr3d 2664 . . . . 5  |-  ( ph  ->  ( S__ [ A  ->  B ] D  _d x  +  ( S__
[ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )  =  S__
[ A  ->  C ] D  _d x
)
7877ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  B  <_  A )  /\  A  <_  C )  ->  ( S__ [ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )  =  S__ [ A  ->  C ] D  _d x )
7968, 78eqtr2d 2657 . . 3  |-  ( ( ( ph  /\  B  <_  A )  /\  A  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
8012ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  ->  B  e.  RR )
8118ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  ->  C  e.  RR )
82 ancom 466 . . . . . . . . . 10  |-  ( ( C  <_  A  /\  B  <_  C )  <->  ( B  <_  C  /\  C  <_  A ) )
832, 3, 8, 14, 1, 22, 23, 82ditgsplitlem 23624 . . . . . . . . 9  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  S__ [ B  ->  A ] D  _d x  =  ( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x ) )
8483oveq1d 6665 . . . . . . . 8  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x )  =  ( ( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x ) )
8532, 54, 30addassd 10062 . . . . . . . . . 10  |-  ( ph  ->  ( ( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  ( S__
[ B  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) ) )
862, 3, 14, 1, 22, 23ditgswap 23623 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ A  ->  C ] D  _d x  =  -u S__ [ C  ->  A ] D  _d x )
8786oveq2d 6666 . . . . . . . . . . . 12  |-  ( ph  ->  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x )  =  ( S__ [ C  ->  A ] D  _d x  +  -u S__ [ C  ->  A ] D  _d x ) )
8854negidd 10382 . . . . . . . . . . . 12  |-  ( ph  ->  ( S__ [ C  ->  A ] D  _d x  +  -u S__ [ C  ->  A ] D  _d x )  =  0 )
8987, 88eqtrd 2656 . . . . . . . . . . 11  |-  ( ph  ->  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x )  =  0 )
9089oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ B  ->  C ] D  _d x  +  ( S__
[ C  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )  =  ( S__ [ B  ->  C ] D  _d x  +  0 ) )
9132addid1d 10236 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ B  ->  C ] D  _d x  +  0 )  =  S__ [ B  ->  C ] D  _d x )
9285, 90, 913eqtrd 2660 . . . . . . . . 9  |-  ( ph  ->  ( ( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  S__ [ B  ->  C ] D  _d x )
9392ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  (
( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  S__ [ B  ->  C ] D  _d x )
9484, 93eqtr2d 2657 . . . . . . 7  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  S__ [ B  ->  C ] D  _d x  =  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )
9594oveq2d 6666 . . . . . 6  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( S__
[ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) ) )
9677ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  ( S__ [ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )  =  S__ [ A  ->  C ] D  _d x )
9795, 96eqtr2d 2657 . . . . 5  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
9897adantllr 755 . . . 4  |-  ( ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  /\  B  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
99 ancom 466 . . . . . . . . . . . 12  |-  ( ( B  <_  A  /\  C  <_  B )  <->  ( C  <_  B  /\  B  <_  A ) )
1002, 3, 14, 8, 1, 22, 23, 99ditgsplitlem 23624 . . . . . . . . . . 11  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  S__ [ C  ->  A ] D  _d x  =  ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x ) )
101100oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x )  =  ( ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x ) )
10231, 74, 55addassd 10062 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  ( S__
[ C  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) ) )
1032, 3, 8, 1, 22, 23ditgswap 23623 . . . . . . . . . . . . . . 15  |-  ( ph  ->  S__ [ A  ->  B ] D  _d x  =  -u S__ [ B  ->  A ] D  _d x )
104103oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x )  =  ( S__ [ B  ->  A ] D  _d x  +  -u S__ [ B  ->  A ] D  _d x ) )
10574negidd 10382 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S__ [ B  ->  A ] D  _d x  +  -u S__ [ B  ->  A ] D  _d x )  =  0 )
106104, 105eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x )  =  0 )
107106oveq2d 6666 . . . . . . . . . . . 12  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  ( S__
[ B  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )  =  ( S__ [ C  ->  B ] D  _d x  +  0 ) )
10831addid1d 10236 . . . . . . . . . . . 12  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  0 )  =  S__ [ C  ->  B ] D  _d x )
109102, 107, 1083eqtrd 2660 . . . . . . . . . . 11  |-  ( ph  ->  ( ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  S__ [ C  ->  B ] D  _d x )
110109ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  (
( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  S__ [ C  ->  B ] D  _d x )
111101, 110eqtr2d 2657 . . . . . . . . 9  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  S__ [ C  ->  B ] D  _d x  =  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )
112111oveq2d 6666 . . . . . . . 8  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  =  ( S__
[ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) ) )
11358ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  ( S__ [ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )  =  S__ [ A  ->  B ] D  _d x )
114112, 113eqtr2d 2657 . . . . . . 7  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  S__ [ A  ->  B ] D  _d x  =  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x ) )
115114oveq1d 6665 . . . . . 6  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x ) )
11640ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  (
( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
117115, 116eqtr2d 2657 . . . . 5  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
118117adantlr 751 . . . 4  |-  ( ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  /\  C  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
11980, 81, 98, 118lecasei 10143 . . 3  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
12064, 65, 79, 119lecasei 10143 . 2  |-  ( (
ph  /\  B  <_  A )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__
[ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
1217, 12, 63, 120lecasei 10143 1  |-  ( ph  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653    |-> cmpt 4729  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939    <_ cle 10075   -ucneg 10267   (,)cioo 12175   [,]cicc 12178   L^1cibl 23386   S__cdit 23610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611
This theorem is referenced by:  itgsubstlem  23811
  Copyright terms: Public domain W3C validator