Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocnrect Structured version   Visualization version   Unicode version

Theorem dya2iocnrect 30343
Description: For any point of an open rectangle in  ( RR  X.  RR ), there is a closed-below open-above dyadic rational square which contains that point and is included in the rectangle. (Contributed by Thierry Arnoux, 12-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0  |-  J  =  ( topGen `  ran  (,) )
dya2ioc.1  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
dya2ioc.2  |-  R  =  ( u  e.  ran  I ,  v  e.  ran  I  |->  ( u  X.  v ) )
dya2iocnrect.1  |-  B  =  ran  ( e  e. 
ran  (,) ,  f  e. 
ran  (,)  |->  ( e  X.  f ) )
Assertion
Ref Expression
dya2iocnrect  |-  ( ( X  e.  ( RR 
X.  RR )  /\  A  e.  B  /\  X  e.  A )  ->  E. b  e.  ran  R ( X  e.  b  /\  b  C_  A
) )
Distinct variable groups:    x, n    x, I    v, u, I, x    e, b, f, A    R, b, e, f   
x, b, X, e, f
Allowed substitution hints:    A( x, v, u, n)    B( x, v, u, e, f, n, b)    R( x, v, u, n)    I( e, f, n, b)    J( x, v, u, e, f, n, b)    X( v, u, n)

Proof of Theorem dya2iocnrect
Dummy variables  s 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dya2iocnrect.1 . . . . . 6  |-  B  =  ran  ( e  e. 
ran  (,) ,  f  e. 
ran  (,)  |->  ( e  X.  f ) )
21eleq2i 2693 . . . . 5  |-  ( A  e.  B  <->  A  e.  ran  ( e  e.  ran  (,)
,  f  e.  ran  (,)  |->  ( e  X.  f
) ) )
3 eqid 2622 . . . . . 6  |-  ( e  e.  ran  (,) , 
f  e.  ran  (,)  |->  ( e  X.  f
) )  =  ( e  e.  ran  (,) ,  f  e.  ran  (,)  |->  ( e  X.  f
) )
4 vex 3203 . . . . . . 7  |-  e  e. 
_V
5 vex 3203 . . . . . . 7  |-  f  e. 
_V
64, 5xpex 6962 . . . . . 6  |-  ( e  X.  f )  e. 
_V
73, 6elrnmpt2 6773 . . . . 5  |-  ( A  e.  ran  ( e  e.  ran  (,) , 
f  e.  ran  (,)  |->  ( e  X.  f
) )  <->  E. e  e.  ran  (,) E. f  e.  ran  (,) A  =  ( e  X.  f
) )
82, 7sylbb 209 . . . 4  |-  ( A  e.  B  ->  E. e  e.  ran  (,) E. f  e.  ran  (,) A  =  ( e  X.  f
) )
983ad2ant2 1083 . . 3  |-  ( ( X  e.  ( RR 
X.  RR )  /\  A  e.  B  /\  X  e.  A )  ->  E. e  e.  ran  (,)
E. f  e.  ran  (,) A  =  ( e  X.  f ) )
10 simp1 1061 . . 3  |-  ( ( X  e.  ( RR 
X.  RR )  /\  A  e.  B  /\  X  e.  A )  ->  X  e.  ( RR 
X.  RR ) )
11 simp3 1063 . . 3  |-  ( ( X  e.  ( RR 
X.  RR )  /\  A  e.  B  /\  X  e.  A )  ->  X  e.  A )
129, 10, 11jca32 558 . 2  |-  ( ( X  e.  ( RR 
X.  RR )  /\  A  e.  B  /\  X  e.  A )  ->  ( E. e  e. 
ran  (,) E. f  e. 
ran  (,) A  =  ( e  X.  f )  /\  ( X  e.  ( RR  X.  RR )  /\  X  e.  A
) ) )
13 r19.41vv 3091 . . 3  |-  ( E. e  e.  ran  (,) E. f  e.  ran  (,) ( A  =  (
e  X.  f )  /\  ( X  e.  ( RR  X.  RR )  /\  X  e.  A
) )  <->  ( E. e  e.  ran  (,) E. f  e.  ran  (,) A  =  ( e  X.  f )  /\  ( X  e.  ( RR  X.  RR )  /\  X  e.  A ) ) )
1413biimpri 218 . 2  |-  ( ( E. e  e.  ran  (,)
E. f  e.  ran  (,) A  =  ( e  X.  f )  /\  ( X  e.  ( RR  X.  RR )  /\  X  e.  A )
)  ->  E. e  e.  ran  (,) E. f  e.  ran  (,) ( A  =  ( e  X.  f )  /\  ( X  e.  ( RR  X.  RR )  /\  X  e.  A ) ) )
15 simprl 794 . . . . . 6  |-  ( ( A  =  ( e  X.  f )  /\  ( X  e.  ( RR  X.  RR )  /\  X  e.  A )
)  ->  X  e.  ( RR  X.  RR ) )
16 simpl 473 . . . . . 6  |-  ( ( A  =  ( e  X.  f )  /\  ( X  e.  ( RR  X.  RR )  /\  X  e.  A )
)  ->  A  =  ( e  X.  f
) )
17 simprr 796 . . . . . . 7  |-  ( ( A  =  ( e  X.  f )  /\  ( X  e.  ( RR  X.  RR )  /\  X  e.  A )
)  ->  X  e.  A )
1817, 16eleqtrd 2703 . . . . . 6  |-  ( ( A  =  ( e  X.  f )  /\  ( X  e.  ( RR  X.  RR )  /\  X  e.  A )
)  ->  X  e.  ( e  X.  f
) )
1915, 16, 183jca 1242 . . . . 5  |-  ( ( A  =  ( e  X.  f )  /\  ( X  e.  ( RR  X.  RR )  /\  X  e.  A )
)  ->  ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) ) )
20 simpr 477 . . . . . 6  |-  ( ( ( e  e.  ran  (,) 
/\  f  e.  ran  (,) )  /\  ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f
)  /\  X  e.  ( e  X.  f
) ) )  -> 
( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) ) )
21 xp1st 7198 . . . . . . . . . 10  |-  ( X  e.  ( RR  X.  RR )  ->  ( 1st `  X )  e.  RR )
22213ad2ant1 1082 . . . . . . . . 9  |-  ( ( X  e.  ( RR 
X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f
) )  ->  ( 1st `  X )  e.  RR )
2322adantl 482 . . . . . . . 8  |-  ( ( ( e  e.  ran  (,) 
/\  f  e.  ran  (,) )  /\  ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f
)  /\  X  e.  ( e  X.  f
) ) )  -> 
( 1st `  X
)  e.  RR )
24 simpll 790 . . . . . . . 8  |-  ( ( ( e  e.  ran  (,) 
/\  f  e.  ran  (,) )  /\  ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f
)  /\  X  e.  ( e  X.  f
) ) )  -> 
e  e.  ran  (,) )
25 xp1st 7198 . . . . . . . . . 10  |-  ( X  e.  ( e  X.  f )  ->  ( 1st `  X )  e.  e )
26253ad2ant3 1084 . . . . . . . . 9  |-  ( ( X  e.  ( RR 
X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f
) )  ->  ( 1st `  X )  e.  e )
2726adantl 482 . . . . . . . 8  |-  ( ( ( e  e.  ran  (,) 
/\  f  e.  ran  (,) )  /\  ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f
)  /\  X  e.  ( e  X.  f
) ) )  -> 
( 1st `  X
)  e.  e )
28 sxbrsiga.0 . . . . . . . . 9  |-  J  =  ( topGen `  ran  (,) )
29 dya2ioc.1 . . . . . . . . 9  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
3028, 29dya2icoseg2 30340 . . . . . . . 8  |-  ( ( ( 1st `  X
)  e.  RR  /\  e  e.  ran  (,)  /\  ( 1st `  X )  e.  e )  ->  E. s  e.  ran  I ( ( 1st `  X )  e.  s  /\  s  C_  e
) )
3123, 24, 27, 30syl3anc 1326 . . . . . . 7  |-  ( ( ( e  e.  ran  (,) 
/\  f  e.  ran  (,) )  /\  ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f
)  /\  X  e.  ( e  X.  f
) ) )  ->  E. s  e.  ran  I ( ( 1st `  X )  e.  s  /\  s  C_  e
) )
32 xp2nd 7199 . . . . . . . . . 10  |-  ( X  e.  ( RR  X.  RR )  ->  ( 2nd `  X )  e.  RR )
33323ad2ant1 1082 . . . . . . . . 9  |-  ( ( X  e.  ( RR 
X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f
) )  ->  ( 2nd `  X )  e.  RR )
3433adantl 482 . . . . . . . 8  |-  ( ( ( e  e.  ran  (,) 
/\  f  e.  ran  (,) )  /\  ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f
)  /\  X  e.  ( e  X.  f
) ) )  -> 
( 2nd `  X
)  e.  RR )
35 simplr 792 . . . . . . . 8  |-  ( ( ( e  e.  ran  (,) 
/\  f  e.  ran  (,) )  /\  ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f
)  /\  X  e.  ( e  X.  f
) ) )  -> 
f  e.  ran  (,) )
36 xp2nd 7199 . . . . . . . . . 10  |-  ( X  e.  ( e  X.  f )  ->  ( 2nd `  X )  e.  f )
37363ad2ant3 1084 . . . . . . . . 9  |-  ( ( X  e.  ( RR 
X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f
) )  ->  ( 2nd `  X )  e.  f )
3837adantl 482 . . . . . . . 8  |-  ( ( ( e  e.  ran  (,) 
/\  f  e.  ran  (,) )  /\  ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f
)  /\  X  e.  ( e  X.  f
) ) )  -> 
( 2nd `  X
)  e.  f )
3928, 29dya2icoseg2 30340 . . . . . . . 8  |-  ( ( ( 2nd `  X
)  e.  RR  /\  f  e.  ran  (,)  /\  ( 2nd `  X )  e.  f )  ->  E. t  e.  ran  I ( ( 2nd `  X )  e.  t  /\  t  C_  f
) )
4034, 35, 38, 39syl3anc 1326 . . . . . . 7  |-  ( ( ( e  e.  ran  (,) 
/\  f  e.  ran  (,) )  /\  ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f
)  /\  X  e.  ( e  X.  f
) ) )  ->  E. t  e.  ran  I ( ( 2nd `  X )  e.  t  /\  t  C_  f
) )
41 reeanv 3107 . . . . . . 7  |-  ( E. s  e.  ran  I E. t  e.  ran  I ( ( ( 1st `  X )  e.  s  /\  s  C_  e )  /\  (
( 2nd `  X
)  e.  t  /\  t  C_  f ) )  <-> 
( E. s  e. 
ran  I ( ( 1st `  X )  e.  s  /\  s  C_  e )  /\  E. t  e.  ran  I ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) )
4231, 40, 41sylanbrc 698 . . . . . 6  |-  ( ( ( e  e.  ran  (,) 
/\  f  e.  ran  (,) )  /\  ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f
)  /\  X  e.  ( e  X.  f
) ) )  ->  E. s  e.  ran  I E. t  e.  ran  I ( ( ( 1st `  X )  e.  s  /\  s  C_  e )  /\  (
( 2nd `  X
)  e.  t  /\  t  C_  f ) ) )
43 eqid 2622 . . . . . . . . . . . 12  |-  ( s  X.  t )  =  ( s  X.  t
)
44 xpeq1 5128 . . . . . . . . . . . . . 14  |-  ( u  =  s  ->  (
u  X.  v )  =  ( s  X.  v ) )
4544eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( u  =  s  ->  (
( s  X.  t
)  =  ( u  X.  v )  <->  ( s  X.  t )  =  ( s  X.  v ) ) )
46 xpeq2 5129 . . . . . . . . . . . . . 14  |-  ( v  =  t  ->  (
s  X.  v )  =  ( s  X.  t ) )
4746eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( v  =  t  ->  (
( s  X.  t
)  =  ( s  X.  v )  <->  ( s  X.  t )  =  ( s  X.  t ) ) )
4845, 47rspc2ev 3324 . . . . . . . . . . . 12  |-  ( ( s  e.  ran  I  /\  t  e.  ran  I  /\  ( s  X.  t )  =  ( s  X.  t ) )  ->  E. u  e.  ran  I E. v  e.  ran  I ( s  X.  t )  =  ( u  X.  v
) )
4943, 48mp3an3 1413 . . . . . . . . . . 11  |-  ( ( s  e.  ran  I  /\  t  e.  ran  I )  ->  E. u  e.  ran  I E. v  e.  ran  I ( s  X.  t )  =  ( u  X.  v
) )
50 dya2ioc.2 . . . . . . . . . . . 12  |-  R  =  ( u  e.  ran  I ,  v  e.  ran  I  |->  ( u  X.  v ) )
51 vex 3203 . . . . . . . . . . . . 13  |-  u  e. 
_V
52 vex 3203 . . . . . . . . . . . . 13  |-  v  e. 
_V
5351, 52xpex 6962 . . . . . . . . . . . 12  |-  ( u  X.  v )  e. 
_V
5450, 53elrnmpt2 6773 . . . . . . . . . . 11  |-  ( ( s  X.  t )  e.  ran  R  <->  E. u  e.  ran  I E. v  e.  ran  I ( s  X.  t )  =  ( u  X.  v
) )
5549, 54sylibr 224 . . . . . . . . . 10  |-  ( ( s  e.  ran  I  /\  t  e.  ran  I )  ->  (
s  X.  t )  e.  ran  R )
5655ad2antrl 764 . . . . . . . . 9  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  (
s  X.  t )  e.  ran  R )
57 xpss 5226 . . . . . . . . . . 11  |-  ( RR 
X.  RR )  C_  ( _V  X.  _V )
58 simpl1 1064 . . . . . . . . . . 11  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  X  e.  ( RR  X.  RR ) )
5957, 58sseldi 3601 . . . . . . . . . 10  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  X  e.  ( _V  X.  _V ) )
60 simprrl 804 . . . . . . . . . . 11  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  (
( 1st `  X
)  e.  s  /\  s  C_  e ) )
6160simpld 475 . . . . . . . . . 10  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  ( 1st `  X )  e.  s )
62 simprrr 805 . . . . . . . . . . 11  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  (
( 2nd `  X
)  e.  t  /\  t  C_  f ) )
6362simpld 475 . . . . . . . . . 10  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  ( 2nd `  X )  e.  t )
64 elxp7 7201 . . . . . . . . . . 11  |-  ( X  e.  ( s  X.  t )  <->  ( X  e.  ( _V  X.  _V )  /\  ( ( 1st `  X )  e.  s  /\  ( 2nd `  X
)  e.  t ) ) )
6564biimpri 218 . . . . . . . . . 10  |-  ( ( X  e.  ( _V 
X.  _V )  /\  (
( 1st `  X
)  e.  s  /\  ( 2nd `  X )  e.  t ) )  ->  X  e.  ( s  X.  t ) )
6659, 61, 63, 65syl12anc 1324 . . . . . . . . 9  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  X  e.  ( s  X.  t
) )
6760simprd 479 . . . . . . . . . . 11  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  s  C_  e )
6862simprd 479 . . . . . . . . . . 11  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  t  C_  f )
69 xpss12 5225 . . . . . . . . . . 11  |-  ( ( s  C_  e  /\  t  C_  f )  -> 
( s  X.  t
)  C_  ( e  X.  f ) )
7067, 68, 69syl2anc 693 . . . . . . . . . 10  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  (
s  X.  t ) 
C_  ( e  X.  f ) )
71 simpl2 1065 . . . . . . . . . 10  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  A  =  ( e  X.  f ) )
7270, 71sseqtr4d 3642 . . . . . . . . 9  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  (
s  X.  t ) 
C_  A )
73 eleq2 2690 . . . . . . . . . . 11  |-  ( b  =  ( s  X.  t )  ->  ( X  e.  b  <->  X  e.  ( s  X.  t
) ) )
74 sseq1 3626 . . . . . . . . . . 11  |-  ( b  =  ( s  X.  t )  ->  (
b  C_  A  <->  ( s  X.  t )  C_  A
) )
7573, 74anbi12d 747 . . . . . . . . . 10  |-  ( b  =  ( s  X.  t )  ->  (
( X  e.  b  /\  b  C_  A
)  <->  ( X  e.  ( s  X.  t
)  /\  ( s  X.  t )  C_  A
) ) )
7675rspcev 3309 . . . . . . . . 9  |-  ( ( ( s  X.  t
)  e.  ran  R  /\  ( X  e.  ( s  X.  t )  /\  ( s  X.  t )  C_  A
) )  ->  E. b  e.  ran  R ( X  e.  b  /\  b  C_  A ) )
7756, 66, 72, 76syl12anc 1324 . . . . . . . 8  |-  ( ( ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f ) )  /\  ( ( s  e.  ran  I  /\  t  e.  ran  I )  /\  (
( ( 1st `  X
)  e.  s  /\  s  C_  e )  /\  ( ( 2nd `  X
)  e.  t  /\  t  C_  f ) ) ) )  ->  E. b  e.  ran  R ( X  e.  b  /\  b  C_  A ) )
7877exp32 631 . . . . . . 7  |-  ( ( X  e.  ( RR 
X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f
) )  ->  (
( s  e.  ran  I  /\  t  e.  ran  I )  ->  (
( ( ( 1st `  X )  e.  s  /\  s  C_  e
)  /\  ( ( 2nd `  X )  e.  t  /\  t  C_  f ) )  ->  E. b  e.  ran  R ( X  e.  b  /\  b  C_  A
) ) ) )
7978rexlimdvv 3037 . . . . . 6  |-  ( ( X  e.  ( RR 
X.  RR )  /\  A  =  ( e  X.  f )  /\  X  e.  ( e  X.  f
) )  ->  ( E. s  e.  ran  I E. t  e.  ran  I ( ( ( 1st `  X )  e.  s  /\  s  C_  e )  /\  (
( 2nd `  X
)  e.  t  /\  t  C_  f ) )  ->  E. b  e.  ran  R ( X  e.  b  /\  b  C_  A
) ) )
8020, 42, 79sylc 65 . . . . 5  |-  ( ( ( e  e.  ran  (,) 
/\  f  e.  ran  (,) )  /\  ( X  e.  ( RR  X.  RR )  /\  A  =  ( e  X.  f
)  /\  X  e.  ( e  X.  f
) ) )  ->  E. b  e.  ran  R ( X  e.  b  /\  b  C_  A
) )
8119, 80sylan2 491 . . . 4  |-  ( ( ( e  e.  ran  (,) 
/\  f  e.  ran  (,) )  /\  ( A  =  ( e  X.  f )  /\  ( X  e.  ( RR  X.  RR )  /\  X  e.  A ) ) )  ->  E. b  e.  ran  R ( X  e.  b  /\  b  C_  A
) )
8281ex 450 . . 3  |-  ( ( e  e.  ran  (,)  /\  f  e.  ran  (,) )  ->  ( ( A  =  ( e  X.  f )  /\  ( X  e.  ( RR  X.  RR )  /\  X  e.  A ) )  ->  E. b  e.  ran  R ( X  e.  b  /\  b  C_  A
) ) )
8382rexlimivv 3036 . 2  |-  ( E. e  e.  ran  (,) E. f  e.  ran  (,) ( A  =  (
e  X.  f )  /\  ( X  e.  ( RR  X.  RR )  /\  X  e.  A
) )  ->  E. b  e.  ran  R ( X  e.  b  /\  b  C_  A ) )
8412, 14, 833syl 18 1  |-  ( ( X  e.  ( RR 
X.  RR )  /\  A  e.  B  /\  X  e.  A )  ->  E. b  e.  ran  R ( X  e.  b  /\  b  C_  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574    X. cxp 5112   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   RRcr 9935   1c1 9937    + caddc 9939    / cdiv 10684   2c2 11070   ZZcz 11377   (,)cioo 12175   [,)cico 12177   ^cexp 12860   topGenctg 16098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-refld 19951  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-fcls 21745  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-cfil 23053  df-cmet 23055  df-cms 23132  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-logb 24503
This theorem is referenced by:  dya2iocnei  30344
  Copyright terms: Public domain W3C validator