MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2seq Structured version   Visualization version   Unicode version

Theorem itg2seq 23509
Description: Definitional property of the  S.2 integral: for any function  F there is a countable sequence 
g of simple functions less than  F whose integrals converge to the integral of  F. (This theorem is for the most part unnecessary in lieu of itg2i1fseq 23522, but unlike that theorem this one doesn't require  F to be measurable.) (Contributed by Mario Carneiro, 14-Aug-2014.)
Assertion
Ref Expression
itg2seq  |-  ( F : RR --> ( 0 [,] +oo )  ->  E. g ( g : NN --> dom  S.1  /\  A. n  e.  NN  (
g `  n )  oR  <_  F  /\  ( S.2 `  F )  =  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) ,  RR* ,  <  ) ) )
Distinct variable group:    g, n, F

Proof of Theorem itg2seq
Dummy variables  f  m  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 11027 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  RR )
21ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  ( S.2 `  F
)  = +oo )  ->  n  e.  RR )
3 ltpnf 11954 . . . . . . . . . . 11  |-  ( n  e.  RR  ->  n  < +oo )
42, 3syl 17 . . . . . . . . . 10  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  ( S.2 `  F
)  = +oo )  ->  n  < +oo )
5 iftrue 4092 . . . . . . . . . . 11  |-  ( ( S.2 `  F )  = +oo  ->  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  =  n )
65adantl 482 . . . . . . . . . 10  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  ( S.2 `  F
)  = +oo )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  =  n )
7 simpr 477 . . . . . . . . . 10  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  ( S.2 `  F
)  = +oo )  ->  ( S.2 `  F
)  = +oo )
84, 6, 73brtr4d 4685 . . . . . . . . 9  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  ( S.2 `  F
)  = +oo )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  <  ( S.2 `  F
) )
9 iffalse 4095 . . . . . . . . . . 11  |-  ( -.  ( S.2 `  F
)  = +oo  ->  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  =  ( ( S.2 `  F
)  -  ( 1  /  n ) ) )
109adantl 482 . . . . . . . . . 10  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  -.  ( S.2 `  F )  = +oo )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  =  ( ( S.2 `  F
)  -  ( 1  /  n ) ) )
11 itg2cl 23499 . . . . . . . . . . . . . . 15  |-  ( F : RR --> ( 0 [,] +oo )  -> 
( S.2 `  F )  e.  RR* )
12 xrrebnd 11999 . . . . . . . . . . . . . . 15  |-  ( ( S.2 `  F )  e.  RR*  ->  ( ( S.2 `  F )  e.  RR  <->  ( -oo  <  ( S.2 `  F
)  /\  ( S.2 `  F )  < +oo ) ) )
1311, 12syl 17 . . . . . . . . . . . . . 14  |-  ( F : RR --> ( 0 [,] +oo )  -> 
( ( S.2 `  F
)  e.  RR  <->  ( -oo  <  ( S.2 `  F
)  /\  ( S.2 `  F )  < +oo ) ) )
14 itg2ge0 23502 . . . . . . . . . . . . . . . 16  |-  ( F : RR --> ( 0 [,] +oo )  -> 
0  <_  ( S.2 `  F ) )
15 mnflt0 11959 . . . . . . . . . . . . . . . . 17  |- -oo  <  0
16 mnfxr 10096 . . . . . . . . . . . . . . . . . . 19  |- -oo  e.  RR*
17 0xr 10086 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR*
18 xrltletr 11988 . . . . . . . . . . . . . . . . . . 19  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\  ( S.2 `  F )  e.  RR* )  ->  ( ( -oo  <  0  /\  0  <_ 
( S.2 `  F ) )  -> -oo  <  ( S.2 `  F ) ) )
1916, 17, 18mp3an12 1414 . . . . . . . . . . . . . . . . . 18  |-  ( ( S.2 `  F )  e.  RR*  ->  ( ( -oo  <  0  /\  0  <_  ( S.2 `  F
) )  -> -oo  <  ( S.2 `  F ) ) )
2011, 19syl 17 . . . . . . . . . . . . . . . . 17  |-  ( F : RR --> ( 0 [,] +oo )  -> 
( ( -oo  <  0  /\  0  <_  ( S.2 `  F ) )  -> -oo  <  ( S.2 `  F ) ) )
2115, 20mpani 712 . . . . . . . . . . . . . . . 16  |-  ( F : RR --> ( 0 [,] +oo )  -> 
( 0  <_  ( S.2 `  F )  -> -oo  <  ( S.2 `  F
) ) )
2214, 21mpd 15 . . . . . . . . . . . . . . 15  |-  ( F : RR --> ( 0 [,] +oo )  -> -oo  <  ( S.2 `  F
) )
2322biantrurd 529 . . . . . . . . . . . . . 14  |-  ( F : RR --> ( 0 [,] +oo )  -> 
( ( S.2 `  F
)  < +oo  <->  ( -oo  <  ( S.2 `  F
)  /\  ( S.2 `  F )  < +oo ) ) )
24 nltpnft 11995 . . . . . . . . . . . . . . . 16  |-  ( ( S.2 `  F )  e.  RR*  ->  ( ( S.2 `  F )  = +oo  <->  -.  ( S.2 `  F )  < +oo ) )
2511, 24syl 17 . . . . . . . . . . . . . . 15  |-  ( F : RR --> ( 0 [,] +oo )  -> 
( ( S.2 `  F
)  = +oo  <->  -.  ( S.2 `  F )  < +oo ) )
2625con2bid 344 . . . . . . . . . . . . . 14  |-  ( F : RR --> ( 0 [,] +oo )  -> 
( ( S.2 `  F
)  < +oo  <->  -.  ( S.2 `  F )  = +oo ) )
2713, 23, 263bitr2rd 297 . . . . . . . . . . . . 13  |-  ( F : RR --> ( 0 [,] +oo )  -> 
( -.  ( S.2 `  F )  = +oo  <->  ( S.2 `  F )  e.  RR ) )
2827biimpa 501 . . . . . . . . . . . 12  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  -.  ( S.2 `  F
)  = +oo )  ->  ( S.2 `  F
)  e.  RR )
2928adantlr 751 . . . . . . . . . . 11  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  -.  ( S.2 `  F )  = +oo )  ->  ( S.2 `  F
)  e.  RR )
30 nnrp 11842 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  RR+ )
3130rpreccld 11882 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
1  /  n )  e.  RR+ )
3231ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  -.  ( S.2 `  F )  = +oo )  ->  ( 1  /  n )  e.  RR+ )
3329, 32ltsubrpd 11904 . . . . . . . . . 10  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  -.  ( S.2 `  F )  = +oo )  ->  ( ( S.2 `  F )  -  (
1  /  n ) )  <  ( S.2 `  F ) )
3410, 33eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  -.  ( S.2 `  F )  = +oo )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <  ( S.2 `  F ) )
358, 34pm2.61dan 832 . . . . . . . 8  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  <  ( S.2 `  F
) )
36 nnrecre 11057 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
1  /  n )  e.  RR )
3736ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  -.  ( S.2 `  F )  = +oo )  ->  ( 1  /  n )  e.  RR )
3829, 37resubcld 10458 . . . . . . . . . . 11  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  -.  ( S.2 `  F )  = +oo )  ->  ( ( S.2 `  F )  -  (
1  /  n ) )  e.  RR )
392, 38ifclda 4120 . . . . . . . . . 10  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  e.  RR )
4039rexrd 10089 . . . . . . . . 9  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  e.  RR* )
4111adantr 481 . . . . . . . . 9  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  ->  ( S.2 `  F
)  e.  RR* )
42 xrltnle 10105 . . . . . . . . 9  |-  ( ( if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  e.  RR*  /\  ( S.2 `  F )  e. 
RR* )  ->  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.2 `  F )  <->  -.  ( S.2 `  F
)  <_  if (
( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) ) )
4340, 41, 42syl2anc 693 . . . . . . . 8  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  ->  ( if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <  ( S.2 `  F )  <->  -.  ( S.2 `  F )  <_  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) ) ) )
4435, 43mpbid 222 . . . . . . 7  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  ->  -.  ( S.2 `  F
)  <_  if (
( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) )
45 itg2leub 23501 . . . . . . . 8  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  e. 
RR* )  ->  (
( S.2 `  F )  <_  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <->  A. f  e.  dom  S.1 ( f  oR  <_  F  ->  ( S.1 `  f )  <_  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) ) ) )
4640, 45syldan 487 . . . . . . 7  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  ->  ( ( S.2 `  F
)  <_  if (
( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <->  A. f  e.  dom  S.1 ( f  oR  <_  F  ->  ( S.1 `  f )  <_  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) ) ) )
4744, 46mtbid 314 . . . . . 6  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  ->  -.  A. f  e. 
dom  S.1 ( f  oR  <_  F  ->  ( S.1 `  f )  <_  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) ) )
48 rexanali 2998 . . . . . 6  |-  ( E. f  e.  dom  S.1 ( f  oR  <_  F  /\  -.  ( S.1 `  f )  <_  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) )  <->  -.  A. f  e.  dom  S.1 ( f  oR  <_  F  ->  ( S.1 `  f )  <_  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) ) )
4947, 48sylibr 224 . . . . 5  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  ->  E. f  e.  dom  S.1 ( f  oR  <_  F  /\  -.  ( S.1 `  f )  <_  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) ) )
50 itg1cl 23452 . . . . . . . 8  |-  ( f  e.  dom  S.1  ->  ( S.1 `  f )  e.  RR )
51 ltnle 10117 . . . . . . . 8  |-  ( ( if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  e.  RR  /\  ( S.1 `  f )  e.  RR )  ->  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  f )  <->  -.  ( S.1 `  f
)  <_  if (
( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) ) )
5239, 50, 51syl2an 494 . . . . . . 7  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  f  e.  dom  S.1 )  ->  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  f )  <->  -.  ( S.1 `  f
)  <_  if (
( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) ) )
5352anbi2d 740 . . . . . 6  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  /\  f  e.  dom  S.1 )  ->  ( (
f  oR  <_  F  /\  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <  ( S.1 `  f ) )  <-> 
( f  oR  <_  F  /\  -.  ( S.1 `  f )  <_  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) ) ) )
5453rexbidva 3049 . . . . 5  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  ->  ( E. f  e. 
dom  S.1 ( f  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  f ) )  <->  E. f  e.  dom  S.1 ( f  oR  <_  F  /\  -.  ( S.1 `  f )  <_  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) ) ) )
5549, 54mpbird 247 . . . 4  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  n  e.  NN )  ->  E. f  e.  dom  S.1 ( f  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  f ) ) )
5655ralrimiva 2966 . . 3  |-  ( F : RR --> ( 0 [,] +oo )  ->  A. n  e.  NN  E. f  e.  dom  S.1 ( f  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  f ) ) )
57 ovex 6678 . . . . 5  |-  ( RR 
^m  RR )  e. 
_V
58 i1ff 23443 . . . . . . 7  |-  ( x  e.  dom  S.1  ->  x : RR --> RR )
59 reex 10027 . . . . . . . 8  |-  RR  e.  _V
6059, 59elmap 7886 . . . . . . 7  |-  ( x  e.  ( RR  ^m  RR )  <->  x : RR --> RR )
6158, 60sylibr 224 . . . . . 6  |-  ( x  e.  dom  S.1  ->  x  e.  ( RR  ^m  RR ) )
6261ssriv 3607 . . . . 5  |-  dom  S.1  C_  ( RR  ^m  RR )
6357, 62ssexi 4803 . . . 4  |-  dom  S.1  e.  _V
64 nnenom 12779 . . . 4  |-  NN  ~~  om
65 breq1 4656 . . . . 5  |-  ( f  =  ( g `  n )  ->  (
f  oR  <_  F 
<->  ( g `  n
)  oR  <_  F ) )
66 fveq2 6191 . . . . . 6  |-  ( f  =  ( g `  n )  ->  ( S.1 `  f )  =  ( S.1 `  (
g `  n )
) )
6766breq2d 4665 . . . . 5  |-  ( f  =  ( g `  n )  ->  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  f )  <-> 
if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  <  ( S.1 `  (
g `  n )
) ) )
6865, 67anbi12d 747 . . . 4  |-  ( f  =  ( g `  n )  ->  (
( f  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  f ) )  <->  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )
6963, 64, 68axcc4 9261 . . 3  |-  ( A. n  e.  NN  E. f  e.  dom  S.1 ( f  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  f ) )  ->  E. g
( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )
7056, 69syl 17 . 2  |-  ( F : RR --> ( 0 [,] +oo )  ->  E. g ( g : NN --> dom  S.1  /\  A. n  e.  NN  (
( g `  n
)  oR  <_  F  /\  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <  ( S.1 `  ( g `  n ) ) ) ) )
71 simprl 794 . . . . 5  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  -> 
g : NN --> dom  S.1 )
72 simpl 473 . . . . . . 7  |-  ( ( ( g `  n
)  oR  <_  F  /\  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <  ( S.1 `  ( g `  n ) ) )  ->  ( g `  n )  oR  <_  F )
7372ralimi 2952 . . . . . 6  |-  ( A. n  e.  NN  (
( g `  n
)  oR  <_  F  /\  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <  ( S.1 `  ( g `  n ) ) )  ->  A. n  e.  NN  ( g `  n
)  oR  <_  F )
7473ad2antll 765 . . . . 5  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  ->  A. n  e.  NN  ( g `  n
)  oR  <_  F )
75 fveq2 6191 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
g `  n )  =  ( g `  m ) )
7675fveq2d 6195 . . . . . . . . . . . 12  |-  ( n  =  m  ->  ( S.1 `  ( g `  n ) )  =  ( S.1 `  (
g `  m )
) )
7776cbvmptv 4750 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  ( S.1 `  ( g `  n
) ) )  =  ( m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) )
7877rneqi 5352 . . . . . . . . . 10  |-  ran  (
n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) )  =  ran  (
m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) )
7978supeq1i 8353 . . . . . . . . 9  |-  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) ,  RR* ,  <  )  =  sup ( ran  ( m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) ,  RR* ,  <  )
80 ffvelrn 6357 . . . . . . . . . . . . . . 15  |-  ( ( g : NN --> dom  S.1  /\  n  e.  NN )  ->  ( g `  n )  e.  dom  S.1 )
81 itg1cl 23452 . . . . . . . . . . . . . . 15  |-  ( ( g `  n )  e.  dom  S.1  ->  ( S.1 `  ( g `
 n ) )  e.  RR )
8280, 81syl 17 . . . . . . . . . . . . . 14  |-  ( ( g : NN --> dom  S.1  /\  n  e.  NN )  ->  ( S.1 `  (
g `  n )
)  e.  RR )
83 eqid 2622 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  |->  ( S.1 `  ( g `  n
) ) )  =  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) )
8482, 83fmptd 6385 . . . . . . . . . . . . 13  |-  ( g : NN --> dom  S.1  ->  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) : NN --> RR )
8584ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  -> 
( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) : NN --> RR )
86 frn 6053 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) : NN --> RR  ->  ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) )  C_  RR )
8785, 86syl 17 . . . . . . . . . . 11  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  ->  ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) )  C_  RR )
88 ressxr 10083 . . . . . . . . . . 11  |-  RR  C_  RR*
8987, 88syl6ss 3615 . . . . . . . . . 10  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  ->  ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) )  C_  RR* )
90 supxrcl 12145 . . . . . . . . . 10  |-  ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) )  C_  RR*  ->  sup ( ran  ( n  e.  NN  |->  ( S.1 `  (
g `  n )
) ) ,  RR* ,  <  )  e.  RR* )
9189, 90syl 17 . . . . . . . . 9  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  ->  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `  n
) ) ) , 
RR* ,  <  )  e. 
RR* )
9279, 91syl5eqelr 2706 . . . . . . . 8  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  ->  sup ( ran  ( m  e.  NN  |->  ( S.1 `  ( g `  m
) ) ) , 
RR* ,  <  )  e. 
RR* )
93 elxr 11950 . . . . . . . . . . 11  |-  ( x  e.  RR*  <->  ( x  e.  RR  \/  x  = +oo  \/  x  = -oo ) )
94 simplrl 800 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  ( S.2 `  F )  = +oo )  ->  x  e.  RR )
95 arch 11289 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  E. n  e.  NN  x  <  n
)
9694, 95syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  ( S.2 `  F )  = +oo )  ->  E. n  e.  NN  x  <  n
)
975adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  ( S.2 `  F )  = +oo )  ->  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  =  n )
9897breq2d 4665 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  ( S.2 `  F )  = +oo )  ->  (
x  <  if (
( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <->  x  <  n ) )
9998rexbidv 3052 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  ( S.2 `  F )  = +oo )  ->  ( E. n  e.  NN  x  <  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <->  E. n  e.  NN  x  <  n
) )
10096, 99mpbird 247 . . . . . . . . . . . . . . . 16  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  ( S.2 `  F )  = +oo )  ->  E. n  e.  NN  x  <  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) ) )
10128adantlr 751 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  -> 
( S.2 `  F )  e.  RR )
102 simplrl 800 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  ->  x  e.  RR )
103101, 102resubcld 10458 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  -> 
( ( S.2 `  F
)  -  x )  e.  RR )
104 simplrr 801 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  ->  x  <  ( S.2 `  F
) )
105102, 101posdifd 10614 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  -> 
( x  <  ( S.2 `  F )  <->  0  <  ( ( S.2 `  F
)  -  x ) ) )
106104, 105mpbid 222 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  -> 
0  <  ( ( S.2 `  F )  -  x ) )
107 nnrecl 11290 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( S.2 `  F
)  -  x )  e.  RR  /\  0  <  ( ( S.2 `  F
)  -  x ) )  ->  E. n  e.  NN  ( 1  /  n )  <  (
( S.2 `  F )  -  x ) )
108103, 106, 107syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  ->  E. n  e.  NN  ( 1  /  n
)  <  ( ( S.2 `  F )  -  x ) )
10936adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( F : RR
--> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  /\  n  e.  NN )  ->  ( 1  /  n
)  e.  RR )
110101adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( F : RR
--> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  /\  n  e.  NN )  ->  ( S.2 `  F
)  e.  RR )
111102adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( F : RR
--> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  /\  n  e.  NN )  ->  x  e.  RR )
112 ltsub13 10509 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1  /  n
)  e.  RR  /\  ( S.2 `  F )  e.  RR  /\  x  e.  RR )  ->  (
( 1  /  n
)  <  ( ( S.2 `  F )  -  x )  <->  x  <  ( ( S.2 `  F
)  -  ( 1  /  n ) ) ) )
113109, 110, 111, 112syl3anc 1326 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F : RR
--> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  /\  n  e.  NN )  ->  ( ( 1  /  n )  <  (
( S.2 `  F )  -  x )  <->  x  <  ( ( S.2 `  F
)  -  ( 1  /  n ) ) ) )
1149ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( F : RR
--> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  /\  n  e.  NN )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  =  ( ( S.2 `  F )  -  (
1  /  n ) ) )
115114breq2d 4665 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F : RR
--> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  /\  n  e.  NN )  ->  ( x  <  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <->  x  <  ( ( S.2 `  F
)  -  ( 1  /  n ) ) ) )
116113, 115bitr4d 271 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F : RR
--> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  /\  n  e.  NN )  ->  ( ( 1  /  n )  <  (
( S.2 `  F )  -  x )  <->  x  <  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) ) ) )
117116rexbidva 3049 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  -> 
( E. n  e.  NN  ( 1  /  n )  <  (
( S.2 `  F )  -  x )  <->  E. n  e.  NN  x  <  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) ) ) )
118108, 117mpbid 222 . . . . . . . . . . . . . . . 16  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  < 
( S.2 `  F ) ) )  /\  -.  ( S.2 `  F )  = +oo )  ->  E. n  e.  NN  x  <  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) )
119100, 118pm2.61dan 832 . . . . . . . . . . . . . . 15  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  /\  x  <  ( S.2 `  F ) ) )  ->  E. n  e.  NN  x  <  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) )
120119expr 643 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  e.  RR )  ->  ( x  <  ( S.2 `  F )  ->  E. n  e.  NN  x  <  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) ) ) )
121 rexr 10085 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  x  e.  RR* )
122 xrltnle 10105 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  ( S.2 `  F )  e. 
RR* )  ->  (
x  <  ( S.2 `  F )  <->  -.  ( S.2 `  F )  <_  x ) )
123121, 11, 122syl2anr 495 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  e.  RR )  ->  ( x  <  ( S.2 `  F )  <->  -.  ( S.2 `  F )  <_  x ) )
124121ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  x  e.  RR )  /\  n  e.  NN )  ->  x  e.  RR* )
12540adantlr 751 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  x  e.  RR )  /\  n  e.  NN )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  e.  RR* )
126 xrltnle 10105 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  e. 
RR* )  ->  (
x  <  if (
( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <->  -.  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  x ) )
127124, 125, 126syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  x  e.  RR )  /\  n  e.  NN )  ->  ( x  < 
if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  <->  -.  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  <_  x ) )
128127rexbidva 3049 . . . . . . . . . . . . . . 15  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  e.  RR )  ->  ( E. n  e.  NN  x  <  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <->  E. n  e.  NN  -.  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  x ) )
129 rexnal 2995 . . . . . . . . . . . . . . 15  |-  ( E. n  e.  NN  -.  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  x 
<->  -.  A. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  x
)
130128, 129syl6bb 276 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  e.  RR )  ->  ( E. n  e.  NN  x  <  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <->  -.  A. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  x
) )
131120, 123, 1303imtr3d 282 . . . . . . . . . . . . 13  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  e.  RR )  ->  ( -.  ( S.2 `  F )  <_  x  ->  -.  A. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  x
) )
132131con4d 114 . . . . . . . . . . . 12  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  e.  RR )  ->  ( A. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  x  ->  ( S.2 `  F
)  <_  x )
)
13311adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  = +oo )  ->  ( S.2 `  F
)  e.  RR* )
134 pnfge 11964 . . . . . . . . . . . . . . 15  |-  ( ( S.2 `  F )  e.  RR*  ->  ( S.2 `  F )  <_ +oo )
135133, 134syl 17 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  = +oo )  ->  ( S.2 `  F
)  <_ +oo )
136 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  = +oo )  ->  x  = +oo )
137135, 136breqtrrd 4681 . . . . . . . . . . . . 13  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  = +oo )  ->  ( S.2 `  F
)  <_  x )
138137a1d 25 . . . . . . . . . . . 12  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  = +oo )  ->  ( A. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  x  ->  ( S.2 `  F
)  <_  x )
)
139 1nn 11031 . . . . . . . . . . . . . . 15  |-  1  e.  NN
140139ne0ii 3923 . . . . . . . . . . . . . 14  |-  NN  =/=  (/)
141 r19.2z 4060 . . . . . . . . . . . . . 14  |-  ( ( NN  =/=  (/)  /\  A. n  e.  NN  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  x )  ->  E. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  x
)
142140, 141mpan 706 . . . . . . . . . . . . 13  |-  ( A. n  e.  NN  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  x  ->  E. n  e.  NN  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  x )
14339adantlr 751 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  x  = -oo )  /\  n  e.  NN )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  e.  RR )
144 mnflt 11957 . . . . . . . . . . . . . . . . . 18  |-  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  e.  RR  -> -oo  <  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) ) )
145 rexr 10085 . . . . . . . . . . . . . . . . . . 19  |-  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  e.  RR  ->  if (
( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  e.  RR* )
146 xrltnle 10105 . . . . . . . . . . . . . . . . . . 19  |-  ( ( -oo  e.  RR*  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  e. 
RR* )  ->  ( -oo  <  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <->  -.  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_ -oo ) )
14716, 145, 146sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  e.  RR  ->  ( -oo  <  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  <->  -.  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  <_ -oo ) )
148144, 147mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  e.  RR  ->  -.  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_ -oo )
149143, 148syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  x  = -oo )  /\  n  e.  NN )  ->  -.  if (
( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_ -oo )
150 simplr 792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  x  = -oo )  /\  n  e.  NN )  ->  x  = -oo )
151150breq2d 4665 . . . . . . . . . . . . . . . 16  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  x  = -oo )  /\  n  e.  NN )  ->  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  x 
<->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  <_ -oo ) )
152149, 151mtbird 315 . . . . . . . . . . . . . . 15  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  x  = -oo )  /\  n  e.  NN )  ->  -.  if (
( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  x
)
153152nrexdv 3001 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  = -oo )  ->  -.  E. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  x
)
154153pm2.21d 118 . . . . . . . . . . . . 13  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  = -oo )  ->  ( E. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  x  ->  ( S.2 `  F
)  <_  x )
)
155142, 154syl5 34 . . . . . . . . . . . 12  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  = -oo )  ->  ( A. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  x  ->  ( S.2 `  F
)  <_  x )
)
156132, 138, 1553jaodan 1394 . . . . . . . . . . 11  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( x  e.  RR  \/  x  = +oo  \/  x  = -oo ) )  ->  ( A. n  e.  NN  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  x  ->  ( S.2 `  F
)  <_  x )
)
15793, 156sylan2b 492 . . . . . . . . . 10  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  x  e.  RR* )  -> 
( A. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  x  ->  ( S.2 `  F
)  <_  x )
)
158157ralrimiva 2966 . . . . . . . . 9  |-  ( F : RR --> ( 0 [,] +oo )  ->  A. x  e.  RR*  ( A. n  e.  NN  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  x  ->  ( S.2 `  F
)  <_  x )
)
159158adantr 481 . . . . . . . 8  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  ->  A. x  e.  RR*  ( A. n  e.  NN  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  x  ->  ( S.2 `  F
)  <_  x )
)
16040adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  e. 
RR* )
16182adantll 750 . . . . . . . . . . . . . 14  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  ( S.1 `  ( g `  n ) )  e.  RR )
162161rexrd 10089 . . . . . . . . . . . . 13  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  ( S.1 `  ( g `  n ) )  e. 
RR* )
163 xrltle 11982 . . . . . . . . . . . . 13  |-  ( ( if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  e.  RR*  /\  ( S.1 `  ( g `  n ) )  e. 
RR* )  ->  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  ( S.1 `  ( g `  n ) ) ) )
164160, 162, 163syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  ( S.1 `  ( g `  n ) ) ) )
16584adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  ->  ( n  e.  NN  |->  ( S.1 `  (
g `  n )
) ) : NN --> RR )
166165, 86syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  ->  ran  ( n  e.  NN  |->  ( S.1 `  (
g `  n )
) )  C_  RR )
167166, 88syl6ss 3615 . . . . . . . . . . . . . . . 16  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  ->  ran  ( n  e.  NN  |->  ( S.1 `  (
g `  n )
) )  C_  RR* )
168167adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) )  C_  RR* )
16978, 168syl5eqssr 3650 . . . . . . . . . . . . . 14  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  ran  ( m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) )  C_  RR* )
170 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  n  ->  (
g `  m )  =  ( g `  n ) )
171170fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( m  =  n  ->  ( S.1 `  ( g `  m ) )  =  ( S.1 `  (
g `  n )
) )
172 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN  |->  ( S.1 `  ( g `  m
) ) )  =  ( m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) )
173 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( S.1 `  ( g `  n
) )  e.  _V
174171, 172, 173fvmpt 6282 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
( m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) `  n )  =  ( S.1 `  (
g `  n )
) )
175 fvex 6201 . . . . . . . . . . . . . . . . . 18  |-  ( S.1 `  ( g `  m
) )  e.  _V
176175, 172fnmpti 6022 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN  |->  ( S.1 `  ( g `  m
) ) )  Fn  NN
177 fnfvelrn 6356 . . . . . . . . . . . . . . . . 17  |-  ( ( ( m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) )  Fn  NN  /\  n  e.  NN )  ->  ( ( m  e.  NN  |->  ( S.1 `  (
g `  m )
) ) `  n
)  e.  ran  (
m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) )
178176, 177mpan 706 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
( m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) `  n )  e.  ran  ( m  e.  NN  |->  ( S.1 `  ( g `  m
) ) ) )
179174, 178eqeltrrd 2702 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  ( S.1 `  ( g `  n ) )  e. 
ran  ( m  e.  NN  |->  ( S.1 `  (
g `  m )
) ) )
180179adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  ( S.1 `  ( g `  n ) )  e. 
ran  ( m  e.  NN  |->  ( S.1 `  (
g `  m )
) ) )
181 supxrub 12154 . . . . . . . . . . . . . 14  |-  ( ( ran  ( m  e.  NN  |->  ( S.1 `  (
g `  m )
) )  C_  RR*  /\  ( S.1 `  ( g `  n ) )  e. 
ran  ( m  e.  NN  |->  ( S.1 `  (
g `  m )
) ) )  -> 
( S.1 `  ( g `
 n ) )  <_  sup ( ran  (
m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) ,  RR* ,  <  ) )
182169, 180, 181syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  ( S.1 `  ( g `  n ) )  <_  sup ( ran  ( m  e.  NN  |->  ( S.1 `  ( g `  m
) ) ) , 
RR* ,  <  ) )
183168, 90syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  sup ( ran  ( n  e.  NN  |->  ( S.1 `  (
g `  n )
) ) ,  RR* ,  <  )  e.  RR* )
18479, 183syl5eqelr 2706 . . . . . . . . . . . . . 14  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  sup ( ran  ( m  e.  NN  |->  ( S.1 `  (
g `  m )
) ) ,  RR* ,  <  )  e.  RR* )
185 xrletr 11989 . . . . . . . . . . . . . 14  |-  ( ( if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  e.  RR*  /\  ( S.1 `  ( g `  n ) )  e. 
RR*  /\  sup ( ran  ( m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) ,  RR* ,  <  )  e.  RR* )  ->  (
( if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  ( S.1 `  ( g `  n ) )  /\  ( S.1 `  ( g `
 n ) )  <_  sup ( ran  (
m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) ,  RR* ,  <  ) )  ->  if (
( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  sup ( ran  ( m  e.  NN  |->  ( S.1 `  (
g `  m )
) ) ,  RR* ,  <  ) ) )
186160, 162, 184, 185syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  (
( if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  ( S.1 `  ( g `  n ) )  /\  ( S.1 `  ( g `
 n ) )  <_  sup ( ran  (
m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) ,  RR* ,  <  ) )  ->  if (
( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  sup ( ran  ( m  e.  NN  |->  ( S.1 `  (
g `  m )
) ) ,  RR* ,  <  ) ) )
187182, 186mpan2d 710 . . . . . . . . . . . 12  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_ 
( S.1 `  ( g `
 n ) )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  sup ( ran  ( m  e.  NN  |->  ( S.1 `  (
g `  m )
) ) ,  RR* ,  <  ) ) )
188164, 187syld 47 . . . . . . . . . . 11  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) )  ->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  sup ( ran  ( m  e.  NN  |->  ( S.1 `  (
g `  m )
) ) ,  RR* ,  <  ) ) )
189188adantld 483 . . . . . . . . . 10  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  (
( ( g `  n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) )  ->  if (
( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  sup ( ran  ( m  e.  NN  |->  ( S.1 `  (
g `  m )
) ) ,  RR* ,  <  ) ) )
190189ralimdva 2962 . . . . . . . . 9  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  ->  ( A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) )  ->  A. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  sup ( ran  ( m  e.  NN  |->  ( S.1 `  (
g `  m )
) ) ,  RR* ,  <  ) ) )
191190impr 649 . . . . . . . 8  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  ->  A. n  e.  NN  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  sup ( ran  ( m  e.  NN  |->  ( S.1 `  ( g `  m
) ) ) , 
RR* ,  <  ) )
192 breq2 4657 . . . . . . . . . . 11  |-  ( x  =  sup ( ran  ( m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) ,  RR* ,  <  )  ->  ( if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  x 
<->  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n ) ) )  <_  sup ( ran  (
m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) ,  RR* ,  <  ) ) )
193192ralbidv 2986 . . . . . . . . . 10  |-  ( x  =  sup ( ran  ( m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) ,  RR* ,  <  )  ->  ( A. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  x  <->  A. n  e.  NN  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  sup ( ran  ( m  e.  NN  |->  ( S.1 `  ( g `  m
) ) ) , 
RR* ,  <  ) ) )
194 breq2 4657 . . . . . . . . . 10  |-  ( x  =  sup ( ran  ( m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) ,  RR* ,  <  )  ->  ( ( S.2 `  F )  <_  x  <->  ( S.2 `  F )  <_  sup ( ran  (
m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) ,  RR* ,  <  ) ) )
195193, 194imbi12d 334 . . . . . . . . 9  |-  ( x  =  sup ( ran  ( m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) ,  RR* ,  <  )  ->  ( ( A. n  e.  NN  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  x  ->  ( S.2 `  F
)  <_  x )  <->  ( A. n  e.  NN  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  <_  sup ( ran  ( m  e.  NN  |->  ( S.1 `  ( g `  m
) ) ) , 
RR* ,  <  )  -> 
( S.2 `  F )  <_  sup ( ran  (
m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) ,  RR* ,  <  ) ) ) )
196195rspcv 3305 . . . . . . . 8  |-  ( sup ( ran  ( m  e.  NN  |->  ( S.1 `  ( g `  m
) ) ) , 
RR* ,  <  )  e. 
RR*  ->  ( A. x  e.  RR*  ( A. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  x  ->  ( S.2 `  F
)  <_  x )  ->  ( A. n  e.  NN  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <_  sup ( ran  ( m  e.  NN  |->  ( S.1 `  (
g `  m )
) ) ,  RR* ,  <  )  ->  ( S.2 `  F )  <_  sup ( ran  ( m  e.  NN  |->  ( S.1 `  ( g `  m
) ) ) , 
RR* ,  <  ) ) ) )
19792, 159, 191, 196syl3c 66 . . . . . . 7  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  -> 
( S.2 `  F )  <_  sup ( ran  (
m  e.  NN  |->  ( S.1 `  ( g `
 m ) ) ) ,  RR* ,  <  ) )
198197, 79syl6breqr 4695 . . . . . 6  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  -> 
( S.2 `  F )  <_  sup ( ran  (
n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) ,  RR* ,  <  ) )
199 itg2ub 23500 . . . . . . . . . . . . . . 15  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g `  n
)  e.  dom  S.1  /\  ( g `  n
)  oR  <_  F )  ->  ( S.1 `  ( g `  n ) )  <_ 
( S.2 `  F ) )
2001993expia 1267 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g `  n
)  e.  dom  S.1 )  ->  ( ( g `
 n )  oR  <_  F  ->  ( S.1 `  ( g `
 n ) )  <_  ( S.2 `  F
) ) )
20180, 200sylan2 491 . . . . . . . . . . . . 13  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  n  e.  NN ) )  -> 
( ( g `  n )  oR  <_  F  ->  ( S.1 `  ( g `  n ) )  <_ 
( S.2 `  F ) ) )
202201anassrs 680 . . . . . . . . . . . 12  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  (
( g `  n
)  oR  <_  F  ->  ( S.1 `  (
g `  n )
)  <_  ( S.2 `  F ) ) )
203202adantrd 484 . . . . . . . . . . 11  |-  ( ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  /\  n  e.  NN )  ->  (
( ( g `  n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) )  ->  ( S.1 `  ( g `  n
) )  <_  ( S.2 `  F ) ) )
204203ralimdva 2962 . . . . . . . . . 10  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  ->  ( A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) )  ->  A. n  e.  NN  ( S.1 `  (
g `  n )
)  <_  ( S.2 `  F ) ) )
205204impr 649 . . . . . . . . 9  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  ->  A. n  e.  NN  ( S.1 `  ( g `
 n ) )  <_  ( S.2 `  F
) )
20676, 83, 175fvmpt 6282 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) `  m )  =  ( S.1 `  (
g `  m )
) )
207206breq1d 4663 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (
( ( n  e.  NN  |->  ( S.1 `  (
g `  n )
) ) `  m
)  <_  ( S.2 `  F )  <->  ( S.1 `  ( g `  m
) )  <_  ( S.2 `  F ) ) )
208207ralbiia 2979 . . . . . . . . . 10  |-  ( A. m  e.  NN  (
( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) `  m )  <_  ( S.2 `  F
)  <->  A. m  e.  NN  ( S.1 `  ( g `
 m ) )  <_  ( S.2 `  F
) )
20976breq1d 4663 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
( S.1 `  ( g `
 n ) )  <_  ( S.2 `  F
)  <->  ( S.1 `  (
g `  m )
)  <_  ( S.2 `  F ) ) )
210209cbvralv 3171 . . . . . . . . . 10  |-  ( A. n  e.  NN  ( S.1 `  ( g `  n ) )  <_ 
( S.2 `  F )  <->  A. m  e.  NN  ( S.1 `  ( g `
 m ) )  <_  ( S.2 `  F
) )
211208, 210bitr4i 267 . . . . . . . . 9  |-  ( A. m  e.  NN  (
( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) `  m )  <_  ( S.2 `  F
)  <->  A. n  e.  NN  ( S.1 `  ( g `
 n ) )  <_  ( S.2 `  F
) )
212205, 211sylibr 224 . . . . . . . 8  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  ->  A. m  e.  NN  ( ( n  e.  NN  |->  ( S.1 `  (
g `  n )
) ) `  m
)  <_  ( S.2 `  F ) )
213 ffn 6045 . . . . . . . . 9  |-  ( ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) : NN --> RR  ->  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) )  Fn  NN )
214 breq1 4656 . . . . . . . . . 10  |-  ( z  =  ( ( n  e.  NN  |->  ( S.1 `  ( g `  n
) ) ) `  m )  ->  (
z  <_  ( S.2 `  F )  <->  ( (
n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) `  m )  <_  ( S.2 `  F
) ) )
215214ralrn 6362 . . . . . . . . 9  |-  ( ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) )  Fn  NN  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) z  <_  ( S.2 `  F )  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( S.1 `  ( g `  n
) ) ) `  m )  <_  ( S.2 `  F ) ) )
21685, 213, 2153syl 18 . . . . . . . 8  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  -> 
( A. z  e. 
ran  ( n  e.  NN  |->  ( S.1 `  (
g `  n )
) ) z  <_ 
( S.2 `  F )  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( S.1 `  (
g `  n )
) ) `  m
)  <_  ( S.2 `  F ) ) )
217212, 216mpbird 247 . . . . . . 7  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  ->  A. z  e.  ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) z  <_  ( S.2 `  F ) )
21811adantr 481 . . . . . . . 8  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  -> 
( S.2 `  F )  e.  RR* )
219 supxrleub 12156 . . . . . . . 8  |-  ( ( ran  ( n  e.  NN  |->  ( S.1 `  (
g `  n )
) )  C_  RR*  /\  ( S.2 `  F )  e. 
RR* )  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( S.2 `  F )  <->  A. z  e.  ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) z  <_  ( S.2 `  F ) ) )
22089, 218, 219syl2anc 693 . . . . . . 7  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  -> 
( sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) ,  RR* ,  <  )  <_  ( S.2 `  F
)  <->  A. z  e.  ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) z  <_  ( S.2 `  F ) ) )
221217, 220mpbird 247 . . . . . 6  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  ->  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( S.2 `  F ) )
22211adantr 481 . . . . . . . 8  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  ->  ( S.2 `  F
)  e.  RR* )
223167, 90syl 17 . . . . . . . 8  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  ->  sup ( ran  (
n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) ,  RR* ,  <  )  e.  RR* )
224 xrletri3 11985 . . . . . . . 8  |-  ( ( ( S.2 `  F
)  e.  RR*  /\  sup ( ran  ( n  e.  NN  |->  ( S.1 `  (
g `  n )
) ) ,  RR* ,  <  )  e.  RR* )  ->  ( ( S.2 `  F )  =  sup ( ran  ( n  e.  NN  |->  ( S.1 `  (
g `  n )
) ) ,  RR* ,  <  )  <->  ( ( S.2 `  F )  <_  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `  n
) ) ) , 
RR* ,  <  )  /\  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( S.2 `  F ) ) ) )
225222, 223, 224syl2anc 693 . . . . . . 7  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  g : NN --> dom  S.1 )  ->  ( ( S.2 `  F )  =  sup ( ran  ( n  e.  NN  |->  ( S.1 `  (
g `  n )
) ) ,  RR* ,  <  )  <->  ( ( S.2 `  F )  <_  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `  n
) ) ) , 
RR* ,  <  )  /\  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( S.2 `  F ) ) ) )
226225adantrr 753 . . . . . 6  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  -> 
( ( S.2 `  F
)  =  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) ,  RR* ,  <  )  <-> 
( ( S.2 `  F
)  <_  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) ,  RR* ,  <  )  /\  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) ,  RR* ,  <  )  <_  ( S.2 `  F
) ) ) )
227198, 221, 226mpbir2and 957 . . . . 5  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  -> 
( S.2 `  F )  =  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) ,  RR* ,  <  ) )
22871, 74, 2273jca 1242 . . . 4  |-  ( ( F : RR --> ( 0 [,] +oo )  /\  ( g : NN --> dom  S.1  /\  A. n  e.  NN  ( ( g `
 n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) ) )  -> 
( g : NN --> dom  S.1  /\  A. n  e.  NN  ( g `  n )  oR  <_  F  /\  ( S.2 `  F )  =  sup ( ran  (
n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) ,  RR* ,  <  ) ) )
229228ex 450 . . 3  |-  ( F : RR --> ( 0 [,] +oo )  -> 
( ( g : NN --> dom  S.1  /\  A. n  e.  NN  (
( g `  n
)  oR  <_  F  /\  if ( ( S.2 `  F )  = +oo ,  n ,  ( ( S.2 `  F )  -  (
1  /  n ) ) )  <  ( S.1 `  ( g `  n ) ) ) )  ->  ( g : NN --> dom  S.1  /\  A. n  e.  NN  (
g `  n )  oR  <_  F  /\  ( S.2 `  F )  =  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) ,  RR* ,  <  ) ) ) )
230229eximdv 1846 . 2  |-  ( F : RR --> ( 0 [,] +oo )  -> 
( E. g ( g : NN --> dom  S.1  /\ 
A. n  e.  NN  ( ( g `  n )  oR  <_  F  /\  if ( ( S.2 `  F
)  = +oo ,  n ,  ( ( S.2 `  F )  -  ( 1  /  n
) ) )  < 
( S.1 `  ( g `
 n ) ) ) )  ->  E. g
( g : NN --> dom  S.1  /\  A. n  e.  NN  ( g `  n )  oR  <_  F  /\  ( S.2 `  F )  =  sup ( ran  (
n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) ,  RR* ,  <  ) ) ) )
23170, 230mpd 15 1  |-  ( F : RR --> ( 0 [,] +oo )  ->  E. g ( g : NN --> dom  S.1  /\  A. n  e.  NN  (
g `  n )  oR  <_  F  /\  ( S.2 `  F )  =  sup ( ran  ( n  e.  NN  |->  ( S.1 `  ( g `
 n ) ) ) ,  RR* ,  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oRcofr 6896    ^m cmap 7857   supcsup 8346   RRcr 9935   0cc0 9936   1c1 9937   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   RR+crp 11832   [,]cicc 12178   S.1citg1 23384   S.2citg2 23385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator