MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfimaopn2 Structured version   Visualization version   Unicode version

Theorem mbfimaopn2 23424
Description: The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
mbfimaopn.1  |-  J  =  ( TopOpen ` fld )
mbfimaopn2.2  |-  K  =  ( Jt  B )
Assertion
Ref Expression
mbfimaopn2  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  C  e.  K )  ->  ( `' F " C )  e.  dom  vol )

Proof of Theorem mbfimaopn2
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 mbfimaopn2.2 . . . . 5  |-  K  =  ( Jt  B )
21eleq2i 2693 . . . 4  |-  ( C  e.  K  <->  C  e.  ( Jt  B ) )
3 mbfimaopn.1 . . . . . 6  |-  J  =  ( TopOpen ` fld )
43cnfldtop 22587 . . . . 5  |-  J  e. 
Top
5 simp3 1063 . . . . . 6  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  B  C_  CC )  ->  B  C_  CC )
6 cnex 10017 . . . . . 6  |-  CC  e.  _V
7 ssexg 4804 . . . . . 6  |-  ( ( B  C_  CC  /\  CC  e.  _V )  ->  B  e.  _V )
85, 6, 7sylancl 694 . . . . 5  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  B  C_  CC )  ->  B  e. 
_V )
9 elrest 16088 . . . . 5  |-  ( ( J  e.  Top  /\  B  e.  _V )  ->  ( C  e.  ( Jt  B )  <->  E. u  e.  J  C  =  ( u  i^i  B ) ) )
104, 8, 9sylancr 695 . . . 4  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  B  C_  CC )  ->  ( C  e.  ( Jt  B )  <->  E. u  e.  J  C  =  ( u  i^i  B ) ) )
112, 10syl5bb 272 . . 3  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  B  C_  CC )  ->  ( C  e.  K  <->  E. u  e.  J  C  =  ( u  i^i  B ) ) )
12 simpl2 1065 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  u  e.  J )  ->  F : A --> B )
13 ffun 6048 . . . . . . 7  |-  ( F : A --> B  ->  Fun  F )
14 inpreima 6342 . . . . . . 7  |-  ( Fun 
F  ->  ( `' F " ( u  i^i 
B ) )  =  ( ( `' F " u )  i^i  ( `' F " B ) ) )
1512, 13, 143syl 18 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  u  e.  J )  ->  ( `' F " ( u  i^i  B ) )  =  ( ( `' F " u )  i^i  ( `' F " B ) ) )
163mbfimaopn 23423 . . . . . . . 8  |-  ( ( F  e. MblFn  /\  u  e.  J )  ->  ( `' F " u )  e.  dom  vol )
17163ad2antl1 1223 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  u  e.  J )  ->  ( `' F " u )  e.  dom  vol )
18 fimacnv 6347 . . . . . . . . . 10  |-  ( F : A --> B  -> 
( `' F " B )  =  A )
19 fdm 6051 . . . . . . . . . 10  |-  ( F : A --> B  ->  dom  F  =  A )
2018, 19eqtr4d 2659 . . . . . . . . 9  |-  ( F : A --> B  -> 
( `' F " B )  =  dom  F )
2112, 20syl 17 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  u  e.  J )  ->  ( `' F " B )  =  dom  F )
22 simpl1 1064 . . . . . . . . 9  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  u  e.  J )  ->  F  e. MblFn )
23 mbfdm 23395 . . . . . . . . 9  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
2422, 23syl 17 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  u  e.  J )  ->  dom  F  e.  dom  vol )
2521, 24eqeltrd 2701 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  u  e.  J )  ->  ( `' F " B )  e.  dom  vol )
26 inmbl 23310 . . . . . . 7  |-  ( ( ( `' F "
u )  e.  dom  vol 
/\  ( `' F " B )  e.  dom  vol )  ->  ( ( `' F " u )  i^i  ( `' F " B ) )  e. 
dom  vol )
2717, 25, 26syl2anc 693 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  u  e.  J )  ->  (
( `' F "
u )  i^i  ( `' F " B ) )  e.  dom  vol )
2815, 27eqeltrd 2701 . . . . 5  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  u  e.  J )  ->  ( `' F " ( u  i^i  B ) )  e.  dom  vol )
29 imaeq2 5462 . . . . . 6  |-  ( C  =  ( u  i^i 
B )  ->  ( `' F " C )  =  ( `' F " ( u  i^i  B
) ) )
3029eleq1d 2686 . . . . 5  |-  ( C  =  ( u  i^i 
B )  ->  (
( `' F " C )  e.  dom  vol  <->  ( `' F " ( u  i^i  B ) )  e.  dom  vol )
)
3128, 30syl5ibrcom 237 . . . 4  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  u  e.  J )  ->  ( C  =  ( u  i^i  B )  ->  ( `' F " C )  e.  dom  vol )
)
3231rexlimdva 3031 . . 3  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  B  C_  CC )  ->  ( E. u  e.  J  C  =  ( u  i^i 
B )  ->  ( `' F " C )  e.  dom  vol )
)
3311, 32sylbid 230 . 2  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  B  C_  CC )  ->  ( C  e.  K  ->  ( `' F " C )  e.  dom  vol )
)
3433imp 445 1  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  C  e.  K )  ->  ( `' F " C )  e.  dom  vol )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   `'ccnv 5113   dom cdm 5114   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746   Topctop 20698   volcvol 23232  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388
This theorem is referenced by:  cncombf  23425
  Copyright terms: Public domain W3C validator