Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsumcn Structured version   Visualization version   Unicode version

Theorem refsumcn 39189
Description: A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn 22673 for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
refsumcn.1  |-  F/ x ph
refsumcn.2  |-  K  =  ( topGen `  ran  (,) )
refsumcn.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
refsumcn.4  |-  ( ph  ->  A  e.  Fin )
refsumcn.5  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B )  e.  ( J  Cn  K ) )
Assertion
Ref Expression
refsumcn  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
Distinct variable groups:    x, k, A    k, J, x    k, X, x    ph, k
Allowed substitution hints:    ph( x)    B( x, k)    K( x, k)

Proof of Theorem refsumcn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2 refsumcn.3 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 refsumcn.4 . . . 4  |-  ( ph  ->  A  e.  Fin )
4 refsumcn.5 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B )  e.  ( J  Cn  K ) )
5 refsumcn.2 . . . . . . . 8  |-  K  =  ( topGen `  ran  (,) )
61tgioo2 22606 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
75, 6eqtri 2644 . . . . . . 7  |-  K  =  ( ( TopOpen ` fld )t  RR )
87oveq2i 6661 . . . . . 6  |-  ( J  Cn  K )  =  ( J  Cn  (
( TopOpen ` fld )t  RR ) )
94, 8syl6eleq 2711 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B )  e.  ( J  Cn  ( ( TopOpen ` fld )t  RR ) ) )
101cnfldtopon 22586 . . . . . . 7  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
1110a1i 11 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )
122adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  J  e.  (TopOn `  X )
)
13 retopon 22567 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
145, 13eqeltri 2697 . . . . . . . . 9  |-  K  e.  (TopOn `  RR )
1514a1i 11 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  K  e.  (TopOn `  RR )
)
16 cnf2 21053 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  RR )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )  ->  ( x  e.  X  |->  B ) : X --> RR )
1712, 15, 4, 16syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B ) : X --> RR )
18 frn 6053 . . . . . . 7  |-  ( ( x  e.  X  |->  B ) : X --> RR  ->  ran  ( x  e.  X  |->  B )  C_  RR )
1917, 18syl 17 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ran  ( x  e.  X  |->  B )  C_  RR )
20 ax-resscn 9993 . . . . . . 7  |-  RR  C_  CC
2120a1i 11 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  RR  C_  CC )
22 cnrest2 21090 . . . . . 6  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( x  e.  X  |->  B )  C_  RR  /\  RR  C_  CC )  ->  ( ( x  e.  X  |->  B )  e.  ( J  Cn  ( TopOpen
` fld
) )  <->  ( x  e.  X  |->  B )  e.  ( J  Cn  ( ( TopOpen ` fld )t  RR ) ) ) )
2311, 19, 21, 22syl3anc 1326 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  (
( x  e.  X  |->  B )  e.  ( J  Cn  ( TopOpen ` fld )
)  <->  ( x  e.  X  |->  B )  e.  ( J  Cn  (
( TopOpen ` fld )t  RR ) ) ) )
249, 23mpbird 247 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B )  e.  ( J  Cn  ( TopOpen ` fld ) ) )
251, 2, 3, 24fsumcnf 39180 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  ( TopOpen ` fld )
) )
2610a1i 11 . . . 4  |-  ( ph  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
27 refsumcn.1 . . . . . . . . . . 11  |-  F/ x ph
283adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Fin )
29 simpll 790 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  A )  ->  ph )
30 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  A )  ->  k  e.  A )
3129, 30jca 554 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  A )  ->  ( ph  /\  k  e.  A
) )
32 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  A )  ->  x  e.  X )
33 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
3433fmpt 6381 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  X  B  e.  RR  <->  ( x  e.  X  |->  B ) : X --> RR )
3517, 34sylibr 224 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  A. x  e.  X  B  e.  RR )
36 rsp 2929 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  X  B  e.  RR  ->  ( x  e.  X  ->  B  e.  RR ) )
3735, 36syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  ->  B  e.  RR )
)
3831, 32, 37sylc 65 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  A )  ->  B  e.  RR )
3928, 38fsumrecl 14465 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  sum_ k  e.  A  B  e.  RR )
4039ex 450 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  X  -> 
sum_ k  e.  A  B  e.  RR )
)
4127, 40ralrimi 2957 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  X  sum_ k  e.  A  B  e.  RR )
42 eqid 2622 . . . . . . . . . . 11  |-  ( x  e.  X  |->  sum_ k  e.  A  B )  =  ( x  e.  X  |->  sum_ k  e.  A  B )
4342fnmpt 6020 . . . . . . . . . 10  |-  ( A. x  e.  X  sum_ k  e.  A  B  e.  RR  ->  ( x  e.  X  |->  sum_ k  e.  A  B )  Fn  X )
4441, 43syl 17 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  Fn  X
)
45 nfcv 2764 . . . . . . . . . 10  |-  F/_ x X
46 nfcv 2764 . . . . . . . . . 10  |-  F/_ x
y
47 nfmpt1 4747 . . . . . . . . . 10  |-  F/_ x
( x  e.  X  |-> 
sum_ k  e.  A  B )
4845, 46, 47fvelrnbf 39177 . . . . . . . . 9  |-  ( ( x  e.  X  |->  sum_ k  e.  A  B
)  Fn  X  -> 
( y  e.  ran  ( x  e.  X  |-> 
sum_ k  e.  A  B )  <->  E. x  e.  X  ( (
x  e.  X  |->  sum_ k  e.  A  B
) `  x )  =  y ) )
4944, 48syl 17 . . . . . . . 8  |-  ( ph  ->  ( y  e.  ran  ( x  e.  X  |-> 
sum_ k  e.  A  B )  <->  E. x  e.  X  ( (
x  e.  X  |->  sum_ k  e.  A  B
) `  x )  =  y ) )
5049biimpa 501 . . . . . . 7  |-  ( (
ph  /\  y  e.  ran  ( x  e.  X  |-> 
sum_ k  e.  A  B ) )  ->  E. x  e.  X  ( ( x  e.  X  |->  sum_ k  e.  A  B ) `  x
)  =  y )
5147nfrn 5368 . . . . . . . . . 10  |-  F/_ x ran  ( x  e.  X  |-> 
sum_ k  e.  A  B )
5251nfcri 2758 . . . . . . . . 9  |-  F/ x  y  e.  ran  ( x  e.  X  |->  sum_ k  e.  A  B )
5327, 52nfan 1828 . . . . . . . 8  |-  F/ x
( ph  /\  y  e.  ran  ( x  e.  X  |->  sum_ k  e.  A  B ) )
54 nfcv 2764 . . . . . . . . 9  |-  F/_ x RR
5554nfcri 2758 . . . . . . . 8  |-  F/ x  y  e.  RR
56 simpr 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
5756, 39jca 554 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  X  /\  sum_ k  e.  A  B  e.  RR ) )
5842fvmpt2 6291 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  sum_ k  e.  A  B  e.  RR )  ->  (
( x  e.  X  |-> 
sum_ k  e.  A  B ) `  x
)  =  sum_ k  e.  A  B )
5957, 58syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |-> 
sum_ k  e.  A  B ) `  x
)  =  sum_ k  e.  A  B )
60593adant3 1081 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X  /\  ( ( x  e.  X  |->  sum_ k  e.  A  B ) `  x )  =  y )  ->  ( (
x  e.  X  |->  sum_ k  e.  A  B
) `  x )  =  sum_ k  e.  A  B )
61 simp3 1063 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X  /\  ( ( x  e.  X  |->  sum_ k  e.  A  B ) `  x )  =  y )  ->  ( (
x  e.  X  |->  sum_ k  e.  A  B
) `  x )  =  y )
6260, 61eqtr3d 2658 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X  /\  ( ( x  e.  X  |->  sum_ k  e.  A  B ) `  x )  =  y )  ->  sum_ k  e.  A  B  =  y )
63393adant3 1081 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X  /\  ( ( x  e.  X  |->  sum_ k  e.  A  B ) `  x )  =  y )  ->  sum_ k  e.  A  B  e.  RR )
6462, 63eqeltrrd 2702 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X  /\  ( ( x  e.  X  |->  sum_ k  e.  A  B ) `  x )  =  y )  ->  y  e.  RR )
65643adant1r 1319 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ran  ( x  e.  X  |->  sum_ k  e.  A  B ) )  /\  x  e.  X  /\  ( ( x  e.  X  |->  sum_ k  e.  A  B ) `  x
)  =  y )  ->  y  e.  RR )
66653exp 1264 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ran  ( x  e.  X  |-> 
sum_ k  e.  A  B ) )  -> 
( x  e.  X  ->  ( ( ( x  e.  X  |->  sum_ k  e.  A  B ) `  x )  =  y  ->  y  e.  RR ) ) )
6753, 55, 66rexlimd 3026 . . . . . . 7  |-  ( (
ph  /\  y  e.  ran  ( x  e.  X  |-> 
sum_ k  e.  A  B ) )  -> 
( E. x  e.  X  ( ( x  e.  X  |->  sum_ k  e.  A  B ) `  x )  =  y  ->  y  e.  RR ) )
6850, 67mpd 15 . . . . . 6  |-  ( (
ph  /\  y  e.  ran  ( x  e.  X  |-> 
sum_ k  e.  A  B ) )  -> 
y  e.  RR )
6968ex 450 . . . . 5  |-  ( ph  ->  ( y  e.  ran  ( x  e.  X  |-> 
sum_ k  e.  A  B )  ->  y  e.  RR ) )
7069ssrdv 3609 . . . 4  |-  ( ph  ->  ran  ( x  e.  X  |->  sum_ k  e.  A  B )  C_  RR )
7120a1i 11 . . . 4  |-  ( ph  ->  RR  C_  CC )
72 cnrest2 21090 . . . 4  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( x  e.  X  |-> 
sum_ k  e.  A  B )  C_  RR  /\  RR  C_  CC )  ->  ( ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  ( TopOpen ` fld )
)  <->  ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  ( (
TopOpen ` fld )t  RR ) ) ) )
7326, 70, 71, 72syl3anc 1326 . . 3  |-  ( ph  ->  ( ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  ( TopOpen ` fld )
)  <->  ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  ( (
TopOpen ` fld )t  RR ) ) ) )
7425, 73mpbid 222 . 2  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  ( (
TopOpen ` fld )t  RR ) ) )
7574, 8syl6eleqr 2712 1  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574    |-> cmpt 4729   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   (,)cioo 12175   sum_csu 14416   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746  TopOnctopon 20715    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  refsum2cnlem1  39196
  Copyright terms: Public domain W3C validator