Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsum2cnlem1 Structured version   Visualization version   Unicode version

Theorem refsum2cnlem1 39196
Description: This is the core Lemma for refsum2cn 39197: the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
refsum2cnlem1.1  |-  F/_ x A
refsum2cnlem1.2  |-  F/_ x F
refsum2cnlem1.3  |-  F/_ x G
refsum2cnlem1.4  |-  F/ x ph
refsum2cnlem1.5  |-  A  =  ( k  e.  {
1 ,  2 } 
|->  if ( k  =  1 ,  F ,  G ) )
refsum2cnlem1.6  |-  K  =  ( topGen `  ran  (,) )
refsum2cnlem1.7  |-  ( ph  ->  J  e.  (TopOn `  X ) )
refsum2cnlem1.8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
refsum2cnlem1.9  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
Assertion
Ref Expression
refsum2cnlem1  |-  ( ph  ->  ( x  e.  X  |->  ( ( F `  x )  +  ( G `  x ) ) )  e.  ( J  Cn  K ) )
Distinct variable groups:    x, k, J    k, F    k, G    k, K, x    k, X, x    ph, k
Allowed substitution hints:    ph( x)    A( x, k)    F( x)    G( x)

Proof of Theorem refsum2cnlem1
StepHypRef Expression
1 refsum2cnlem1.4 . . 3  |-  F/ x ph
2 refsum2cnlem1.5 . . . . . . . . 9  |-  A  =  ( k  e.  {
1 ,  2 } 
|->  if ( k  =  1 ,  F ,  G ) )
3 nfmpt1 4747 . . . . . . . . 9  |-  F/_ k
( k  e.  {
1 ,  2 } 
|->  if ( k  =  1 ,  F ,  G ) )
42, 3nfcxfr 2762 . . . . . . . 8  |-  F/_ k A
5 nfcv 2764 . . . . . . . 8  |-  F/_ k
1
64, 5nffv 6198 . . . . . . 7  |-  F/_ k
( A `  1
)
7 nfcv 2764 . . . . . . 7  |-  F/_ k
x
86, 7nffv 6198 . . . . . 6  |-  F/_ k
( ( A ` 
1 ) `  x
)
98a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  F/_ k
( ( A ` 
1 ) `  x
) )
10 nfcv 2764 . . . . . . . 8  |-  F/_ k
2
114, 10nffv 6198 . . . . . . 7  |-  F/_ k
( A `  2
)
1211, 7nffv 6198 . . . . . 6  |-  F/_ k
( ( A ` 
2 ) `  x
)
1312a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  F/_ k
( ( A ` 
2 ) `  x
) )
14 1cnd 10056 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  1  e.  CC )
15 2cnd 11093 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  2  e.  CC )
16 1ex 10035 . . . . . . . . . . 11  |-  1  e.  _V
1716prid1 4297 . . . . . . . . . 10  |-  1  e.  { 1 ,  2 }
18 refsum2cnlem1.8 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
19 refsum2cnlem1.9 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
2018, 19ifcld 4131 . . . . . . . . . 10  |-  ( ph  ->  if ( 1  =  1 ,  F ,  G )  e.  ( J  Cn  K ) )
21 eqeq1 2626 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
k  =  1  <->  1  =  1 ) )
2221ifbid 4108 . . . . . . . . . . 11  |-  ( k  =  1  ->  if ( k  =  1 ,  F ,  G
)  =  if ( 1  =  1 ,  F ,  G ) )
2322, 2fvmptg 6280 . . . . . . . . . 10  |-  ( ( 1  e.  { 1 ,  2 }  /\  if ( 1  =  1 ,  F ,  G
)  e.  ( J  Cn  K ) )  ->  ( A ` 
1 )  =  if ( 1  =  1 ,  F ,  G
) )
2417, 20, 23sylancr 695 . . . . . . . . 9  |-  ( ph  ->  ( A `  1
)  =  if ( 1  =  1 ,  F ,  G ) )
25 eqid 2622 . . . . . . . . . 10  |-  1  =  1
2625iftruei 4093 . . . . . . . . 9  |-  if ( 1  =  1 ,  F ,  G )  =  F
2724, 26syl6eq 2672 . . . . . . . 8  |-  ( ph  ->  ( A `  1
)  =  F )
2827adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( A `  1 )  =  F )
2928fveq1d 6193 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
( A `  1
) `  x )  =  ( F `  x ) )
30 eqid 2622 . . . . . . . . . . 11  |-  U. J  =  U. J
31 eqid 2622 . . . . . . . . . . 11  |-  U. K  =  U. K
3230, 31cnf 21050 . . . . . . . . . 10  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
3318, 32syl 17 . . . . . . . . 9  |-  ( ph  ->  F : U. J --> U. K )
34 refsum2cnlem1.7 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  (TopOn `  X ) )
35 toponuni 20719 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
3634, 35syl 17 . . . . . . . . . . 11  |-  ( ph  ->  X  =  U. J
)
3736eqcomd 2628 . . . . . . . . . 10  |-  ( ph  ->  U. J  =  X )
38 refsum2cnlem1.6 . . . . . . . . . . . . 13  |-  K  =  ( topGen `  ran  (,) )
3938unieqi 4445 . . . . . . . . . . . 12  |-  U. K  =  U. ( topGen `  ran  (,) )
40 uniretop 22566 . . . . . . . . . . . 12  |-  RR  =  U. ( topGen `  ran  (,) )
4139, 40eqtr4i 2647 . . . . . . . . . . 11  |-  U. K  =  RR
4241a1i 11 . . . . . . . . . 10  |-  ( ph  ->  U. K  =  RR )
4337, 42feq23d 6040 . . . . . . . . 9  |-  ( ph  ->  ( F : U. J
--> U. K  <->  F : X
--> RR ) )
4433, 43mpbid 222 . . . . . . . 8  |-  ( ph  ->  F : X --> RR )
4544anim1i 592 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( F : X --> RR  /\  x  e.  X )
)
46 ffvelrn 6357 . . . . . . 7  |-  ( ( F : X --> RR  /\  x  e.  X )  ->  ( F `  x
)  e.  RR )
47 recn 10026 . . . . . . 7  |-  ( ( F `  x )  e.  RR  ->  ( F `  x )  e.  CC )
4845, 46, 473syl 18 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  CC )
4929, 48eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( A `  1
) `  x )  e.  CC )
50 2ex 11092 . . . . . . . . . . 11  |-  2  e.  _V
5150prid2 4298 . . . . . . . . . 10  |-  2  e.  { 1 ,  2 }
5218, 19ifcld 4131 . . . . . . . . . 10  |-  ( ph  ->  if ( 2  =  1 ,  F ,  G )  e.  ( J  Cn  K ) )
53 eqeq1 2626 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
k  =  1  <->  2  =  1 ) )
5453ifbid 4108 . . . . . . . . . . 11  |-  ( k  =  2  ->  if ( k  =  1 ,  F ,  G
)  =  if ( 2  =  1 ,  F ,  G ) )
5554, 2fvmptg 6280 . . . . . . . . . 10  |-  ( ( 2  e.  { 1 ,  2 }  /\  if ( 2  =  1 ,  F ,  G
)  e.  ( J  Cn  K ) )  ->  ( A ` 
2 )  =  if ( 2  =  1 ,  F ,  G
) )
5651, 52, 55sylancr 695 . . . . . . . . 9  |-  ( ph  ->  ( A `  2
)  =  if ( 2  =  1 ,  F ,  G ) )
57 1ne2 11240 . . . . . . . . . . 11  |-  1  =/=  2
5857nesymi 2851 . . . . . . . . . 10  |-  -.  2  =  1
5958iffalsei 4096 . . . . . . . . 9  |-  if ( 2  =  1 ,  F ,  G )  =  G
6056, 59syl6eq 2672 . . . . . . . 8  |-  ( ph  ->  ( A `  2
)  =  G )
6160adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( A `  2 )  =  G )
6261fveq1d 6193 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
( A `  2
) `  x )  =  ( G `  x ) )
6330, 31cnf 21050 . . . . . . . . . 10  |-  ( G  e.  ( J  Cn  K )  ->  G : U. J --> U. K
)
6419, 63syl 17 . . . . . . . . 9  |-  ( ph  ->  G : U. J --> U. K )
6537, 42feq23d 6040 . . . . . . . . 9  |-  ( ph  ->  ( G : U. J
--> U. K  <->  G : X
--> RR ) )
6664, 65mpbid 222 . . . . . . . 8  |-  ( ph  ->  G : X --> RR )
6766anim1i 592 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( G : X --> RR  /\  x  e.  X )
)
68 ffvelrn 6357 . . . . . . 7  |-  ( ( G : X --> RR  /\  x  e.  X )  ->  ( G `  x
)  e.  RR )
69 recn 10026 . . . . . . 7  |-  ( ( G `  x )  e.  RR  ->  ( G `  x )  e.  CC )
7067, 68, 693syl 18 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( G `  x )  e.  CC )
7162, 70eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( A `  2
) `  x )  e.  CC )
7257a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  1  =/=  2 )
73 fveq2 6191 . . . . . . 7  |-  ( k  =  1  ->  ( A `  k )  =  ( A ` 
1 ) )
7473fveq1d 6193 . . . . . 6  |-  ( k  =  1  ->  (
( A `  k
) `  x )  =  ( ( A `
 1 ) `  x ) )
7574adantl 482 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  k  =  1 )  -> 
( ( A `  k ) `  x
)  =  ( ( A `  1 ) `
 x ) )
76 fveq2 6191 . . . . . . 7  |-  ( k  =  2  ->  ( A `  k )  =  ( A ` 
2 ) )
7776fveq1d 6193 . . . . . 6  |-  ( k  =  2  ->  (
( A `  k
) `  x )  =  ( ( A `
 2 ) `  x ) )
7877adantl 482 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  k  =  2 )  -> 
( ( A `  k ) `  x
)  =  ( ( A `  2 ) `
 x ) )
799, 13, 14, 15, 49, 71, 72, 75, 78sumpair 39194 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  sum_ k  e.  { 1 ,  2 }  ( ( A `
 k ) `  x )  =  ( ( ( A ` 
1 ) `  x
)  +  ( ( A `  2 ) `
 x ) ) )
8029, 62oveq12d 6668 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( A ` 
1 ) `  x
)  +  ( ( A `  2 ) `
 x ) )  =  ( ( F `
 x )  +  ( G `  x
) ) )
8179, 80eqtrd 2656 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  sum_ k  e.  { 1 ,  2 }  ( ( A `
 k ) `  x )  =  ( ( F `  x
)  +  ( G `
 x ) ) )
821, 81mpteq2da 4743 . 2  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  {
1 ,  2 }  ( ( A `  k ) `  x
) )  =  ( x  e.  X  |->  ( ( F `  x
)  +  ( G `
 x ) ) ) )
83 prfi 8235 . . . 4  |-  { 1 ,  2 }  e.  Fin
8483a1i 11 . . 3  |-  ( ph  ->  { 1 ,  2 }  e.  Fin )
85 eqid 2622 . . . . . . . . . 10  |-  X  =  X
8685ax-gen 1722 . . . . . . . . 9  |-  A. x  X  =  X
87 refsum2cnlem1.1 . . . . . . . . . . . 12  |-  F/_ x A
88 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ x
k
8987, 88nffv 6198 . . . . . . . . . . 11  |-  F/_ x
( A `  k
)
90 refsum2cnlem1.2 . . . . . . . . . . 11  |-  F/_ x F
9189, 90nfeq 2776 . . . . . . . . . 10  |-  F/ x
( A `  k
)  =  F
92 fveq1 6190 . . . . . . . . . . 11  |-  ( ( A `  k )  =  F  ->  (
( A `  k
) `  x )  =  ( F `  x ) )
9392a1d 25 . . . . . . . . . 10  |-  ( ( A `  k )  =  F  ->  (
x  e.  X  -> 
( ( A `  k ) `  x
)  =  ( F `
 x ) ) )
9491, 93ralrimi 2957 . . . . . . . . 9  |-  ( ( A `  k )  =  F  ->  A. x  e.  X  ( ( A `  k ) `  x )  =  ( F `  x ) )
95 mpteq12f 4731 . . . . . . . . 9  |-  ( ( A. x  X  =  X  /\  A. x  e.  X  ( ( A `  k ) `  x )  =  ( F `  x ) )  ->  ( x  e.  X  |->  ( ( A `  k ) `
 x ) )  =  ( x  e.  X  |->  ( F `  x ) ) )
9686, 94, 95sylancr 695 . . . . . . . 8  |-  ( ( A `  k )  =  F  ->  (
x  e.  X  |->  ( ( A `  k
) `  x )
)  =  ( x  e.  X  |->  ( F `
 x ) ) )
9796adantl 482 . . . . . . 7  |-  ( (
ph  /\  ( A `  k )  =  F )  ->  ( x  e.  X  |->  ( ( A `  k ) `
 x ) )  =  ( x  e.  X  |->  ( F `  x ) ) )
98 retopon 22567 . . . . . . . . . . . . 13  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
9938, 98eqeltri 2697 . . . . . . . . . . . 12  |-  K  e.  (TopOn `  RR )
10099a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  (TopOn `  RR ) )
101 cnf2 21053 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  RR )  /\  F  e.  ( J  Cn  K ) )  ->  F : X --> RR )
10234, 100, 18, 101syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  F : X --> RR )
103 ffn 6045 . . . . . . . . . 10  |-  ( F : X --> RR  ->  F  Fn  X )
104102, 103syl 17 . . . . . . . . 9  |-  ( ph  ->  F  Fn  X )
10590dffn5f 6252 . . . . . . . . 9  |-  ( F  Fn  X  <->  F  =  ( x  e.  X  |->  ( F `  x
) ) )
106104, 105sylib 208 . . . . . . . 8  |-  ( ph  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
107106adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( A `  k )  =  F )  ->  F  =  ( x  e.  X  |->  ( F `  x
) ) )
10897, 107eqtr4d 2659 . . . . . 6  |-  ( (
ph  /\  ( A `  k )  =  F )  ->  ( x  e.  X  |->  ( ( A `  k ) `
 x ) )  =  F )
10918adantr 481 . . . . . 6  |-  ( (
ph  /\  ( A `  k )  =  F )  ->  F  e.  ( J  Cn  K
) )
110108, 109eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  ( A `  k )  =  F )  ->  ( x  e.  X  |->  ( ( A `  k ) `
 x ) )  e.  ( J  Cn  K ) )
111110adantlr 751 . . . 4  |-  ( ( ( ph  /\  k  e.  { 1 ,  2 } )  /\  ( A `  k )  =  F )  ->  (
x  e.  X  |->  ( ( A `  k
) `  x )
)  e.  ( J  Cn  K ) )
112 refsum2cnlem1.3 . . . . . . . . . . 11  |-  F/_ x G
11389, 112nfeq 2776 . . . . . . . . . 10  |-  F/ x
( A `  k
)  =  G
114 fveq1 6190 . . . . . . . . . . 11  |-  ( ( A `  k )  =  G  ->  (
( A `  k
) `  x )  =  ( G `  x ) )
115114a1d 25 . . . . . . . . . 10  |-  ( ( A `  k )  =  G  ->  (
x  e.  X  -> 
( ( A `  k ) `  x
)  =  ( G `
 x ) ) )
116113, 115ralrimi 2957 . . . . . . . . 9  |-  ( ( A `  k )  =  G  ->  A. x  e.  X  ( ( A `  k ) `  x )  =  ( G `  x ) )
117 mpteq12f 4731 . . . . . . . . 9  |-  ( ( A. x  X  =  X  /\  A. x  e.  X  ( ( A `  k ) `  x )  =  ( G `  x ) )  ->  ( x  e.  X  |->  ( ( A `  k ) `
 x ) )  =  ( x  e.  X  |->  ( G `  x ) ) )
11886, 116, 117sylancr 695 . . . . . . . 8  |-  ( ( A `  k )  =  G  ->  (
x  e.  X  |->  ( ( A `  k
) `  x )
)  =  ( x  e.  X  |->  ( G `
 x ) ) )
119118adantl 482 . . . . . . 7  |-  ( (
ph  /\  ( A `  k )  =  G )  ->  ( x  e.  X  |->  ( ( A `  k ) `
 x ) )  =  ( x  e.  X  |->  ( G `  x ) ) )
120 cnf2 21053 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  RR )  /\  G  e.  ( J  Cn  K ) )  ->  G : X --> RR )
12134, 100, 19, 120syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  G : X --> RR )
122 ffn 6045 . . . . . . . . . 10  |-  ( G : X --> RR  ->  G  Fn  X )
123121, 122syl 17 . . . . . . . . 9  |-  ( ph  ->  G  Fn  X )
124112dffn5f 6252 . . . . . . . . 9  |-  ( G  Fn  X  <->  G  =  ( x  e.  X  |->  ( G `  x
) ) )
125123, 124sylib 208 . . . . . . . 8  |-  ( ph  ->  G  =  ( x  e.  X  |->  ( G `
 x ) ) )
126125adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( A `  k )  =  G )  ->  G  =  ( x  e.  X  |->  ( G `  x
) ) )
127119, 126eqtr4d 2659 . . . . . 6  |-  ( (
ph  /\  ( A `  k )  =  G )  ->  ( x  e.  X  |->  ( ( A `  k ) `
 x ) )  =  G )
12819adantr 481 . . . . . 6  |-  ( (
ph  /\  ( A `  k )  =  G )  ->  G  e.  ( J  Cn  K
) )
129127, 128eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  ( A `  k )  =  G )  ->  ( x  e.  X  |->  ( ( A `  k ) `
 x ) )  e.  ( J  Cn  K ) )
130129adantlr 751 . . . 4  |-  ( ( ( ph  /\  k  e.  { 1 ,  2 } )  /\  ( A `  k )  =  G )  ->  (
x  e.  X  |->  ( ( A `  k
) `  x )
)  e.  ( J  Cn  K ) )
131 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  { 1 ,  2 } )  ->  k  e.  { 1 ,  2 } )
13218, 19ifcld 4131 . . . . . . . . 9  |-  ( ph  ->  if ( k  =  1 ,  F ,  G )  e.  ( J  Cn  K ) )
133132adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  { 1 ,  2 } )  ->  if (
k  =  1 ,  F ,  G )  e.  ( J  Cn  K ) )
1342fvmpt2 6291 . . . . . . . 8  |-  ( ( k  e.  { 1 ,  2 }  /\  if ( k  =  1 ,  F ,  G
)  e.  ( J  Cn  K ) )  ->  ( A `  k )  =  if ( k  =  1 ,  F ,  G
) )
135131, 133, 134syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  k  e.  { 1 ,  2 } )  ->  ( A `  k )  =  if ( k  =  1 ,  F ,  G
) )
136 iftrue 4092 . . . . . . 7  |-  ( k  =  1  ->  if ( k  =  1 ,  F ,  G
)  =  F )
137135, 136sylan9eq 2676 . . . . . 6  |-  ( ( ( ph  /\  k  e.  { 1 ,  2 } )  /\  k  =  1 )  -> 
( A `  k
)  =  F )
138137orcd 407 . . . . 5  |-  ( ( ( ph  /\  k  e.  { 1 ,  2 } )  /\  k  =  1 )  -> 
( ( A `  k )  =  F  \/  ( A `  k )  =  G ) )
139135adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  { 1 ,  2 } )  /\  k  =  2 )  -> 
( A `  k
)  =  if ( k  =  1 ,  F ,  G ) )
140 neeq2 2857 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
1  =/=  k  <->  1  =/=  2 ) )
14157, 140mpbiri 248 . . . . . . . . . . 11  |-  ( k  =  2  ->  1  =/=  k )
142141necomd 2849 . . . . . . . . . 10  |-  ( k  =  2  ->  k  =/=  1 )
143142neneqd 2799 . . . . . . . . 9  |-  ( k  =  2  ->  -.  k  =  1 )
144143adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  { 1 ,  2 } )  /\  k  =  2 )  ->  -.  k  =  1
)
145144iffalsed 4097 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  { 1 ,  2 } )  /\  k  =  2 )  ->  if ( k  =  1 ,  F ,  G
)  =  G )
146139, 145eqtrd 2656 . . . . . 6  |-  ( ( ( ph  /\  k  e.  { 1 ,  2 } )  /\  k  =  2 )  -> 
( A `  k
)  =  G )
147146olcd 408 . . . . 5  |-  ( ( ( ph  /\  k  e.  { 1 ,  2 } )  /\  k  =  2 )  -> 
( ( A `  k )  =  F  \/  ( A `  k )  =  G ) )
148 elpri 4197 . . . . . 6  |-  ( k  e.  { 1 ,  2 }  ->  (
k  =  1  \/  k  =  2 ) )
149148adantl 482 . . . . 5  |-  ( (
ph  /\  k  e.  { 1 ,  2 } )  ->  ( k  =  1  \/  k  =  2 ) )
150138, 147, 149mpjaodan 827 . . . 4  |-  ( (
ph  /\  k  e.  { 1 ,  2 } )  ->  ( ( A `  k )  =  F  \/  ( A `  k )  =  G ) )
151111, 130, 150mpjaodan 827 . . 3  |-  ( (
ph  /\  k  e.  { 1 ,  2 } )  ->  ( x  e.  X  |->  ( ( A `  k ) `
 x ) )  e.  ( J  Cn  K ) )
1521, 38, 34, 84, 151refsumcn 39189 . 2  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  {
1 ,  2 }  ( ( A `  k ) `  x
) )  e.  ( J  Cn  K ) )
15382, 152eqeltrrd 2702 1  |-  ( ph  ->  ( x  e.  X  |->  ( ( F `  x )  +  ( G `  x ) ) )  e.  ( J  Cn  K ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   A.wral 2912   ifcif 4086   {cpr 4179   U.cuni 4436    |-> cmpt 4729   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939   2c2 11070   (,)cioo 12175   sum_csu 14416   topGenctg 16098  TopOnctopon 20715    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  refsum2cn  39197
  Copyright terms: Public domain W3C validator