MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem1 Structured version   Visualization version   GIF version

Theorem bposlem1 25009
Description: An upper bound on the prime powers dividing a central binomial coefficient. (Contributed by Mario Carneiro, 9-Mar-2014.)
Assertion
Ref Expression
bposlem1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))

Proof of Theorem bposlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 12772 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (1...(2 · 𝑁)) ∈ Fin)
2 2nn 11185 . . . . . . . . . . 11 2 ∈ ℕ
3 nnmulcl 11043 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
42, 3mpan 706 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
54ad2antrr 762 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℕ)
6 prmnn 15388 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
76ad2antlr 763 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑃 ∈ ℕ)
8 elfznn 12370 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
98adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℕ)
109nnnn0d 11351 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℕ0)
117, 10nnexpcld 13030 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℕ)
12 nnrp 11842 . . . . . . . . . 10 ((2 · 𝑁) ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
13 nnrp 11842 . . . . . . . . . 10 ((𝑃𝑘) ∈ ℕ → (𝑃𝑘) ∈ ℝ+)
14 rpdivcl 11856 . . . . . . . . . 10 (((2 · 𝑁) ∈ ℝ+ ∧ (𝑃𝑘) ∈ ℝ+) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
1512, 13, 14syl2an 494 . . . . . . . . 9 (((2 · 𝑁) ∈ ℕ ∧ (𝑃𝑘) ∈ ℕ) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
165, 11, 15syl2anc 693 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
1716rpred 11872 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
1817flcld 12599 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ∈ ℤ)
19 2z 11409 . . . . . . 7 2 ∈ ℤ
20 simpll 790 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℕ)
21 nnrp 11842 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
22 rpdivcl 11856 . . . . . . . . . . 11 ((𝑁 ∈ ℝ+ ∧ (𝑃𝑘) ∈ ℝ+) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2321, 13, 22syl2an 494 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃𝑘) ∈ ℕ) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2420, 11, 23syl2anc 693 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2524rpred 11872 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
2625flcld 12599 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
27 zmulcl 11426 . . . . . . 7 ((2 ∈ ℤ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℤ)
2819, 26, 27sylancr 695 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℤ)
2918, 28zsubcld 11487 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℤ)
3029zred 11482 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℝ)
31 1re 10039 . . . . . 6 1 ∈ ℝ
32 0re 10040 . . . . . 6 0 ∈ ℝ
3331, 32keepel 4155 . . . . 5 if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ∈ ℝ
3433a1i 11 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ∈ ℝ)
3528zred 11482 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℝ)
3617, 35resubcld 10458 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℝ)
37 2re 11090 . . . . . . . . . 10 2 ∈ ℝ
3837a1i 11 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 2 ∈ ℝ)
3918zred 11482 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ∈ ℝ)
40 flle 12600 . . . . . . . . . . 11 (((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ≤ ((2 · 𝑁) / (𝑃𝑘)))
4117, 40syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ≤ ((2 · 𝑁) / (𝑃𝑘)))
4239, 17, 35, 41lesub1dd 10643 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
43 resubcl 10345 . . . . . . . . . . . . 13 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ)
4425, 31, 43sylancl 694 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ)
45 remulcl 10021 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) ∈ ℝ)
4637, 44, 45sylancr 695 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) ∈ ℝ)
47 flltp1 12601 . . . . . . . . . . . . . 14 ((𝑁 / (𝑃𝑘)) ∈ ℝ → (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1))
4825, 47syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1))
49 1red 10055 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈ ℝ)
5026zred 11482 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ)
5125, 49, 50ltsubaddd 10623 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1)))
5248, 51mpbird 247 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))))
53 2pos 11112 . . . . . . . . . . . . . . 15 0 < 2
5437, 53pm3.2i 471 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 0 < 2)
55 ltmul2 10874 . . . . . . . . . . . . . 14 ((((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5654, 55mp3an3 1413 . . . . . . . . . . . . 13 ((((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5744, 50, 56syl2anc 693 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5852, 57mpbid 222 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘)))))
5946, 35, 17, 58ltsub2dd 10640 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))))
60 2cnd 11093 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 2 ∈ ℂ)
61 nncn 11028 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6261ad2antrr 762 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℂ)
6311nncnd 11036 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℂ)
6411nnne0d 11065 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ≠ 0)
6560, 62, 63, 64divassd 10836 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) = (2 · (𝑁 / (𝑃𝑘))))
6625recnd 10068 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℂ)
67 1cnd 10056 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈ ℂ)
6860, 66, 67subdid 10486 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) = ((2 · (𝑁 / (𝑃𝑘))) − (2 · 1)))
69 2t1e2 11176 . . . . . . . . . . . . . 14 (2 · 1) = 2
7069oveq2i 6661 . . . . . . . . . . . . 13 ((2 · (𝑁 / (𝑃𝑘))) − (2 · 1)) = ((2 · (𝑁 / (𝑃𝑘))) − 2)
7168, 70syl6eq 2672 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) = ((2 · (𝑁 / (𝑃𝑘))) − 2))
7265, 71oveq12d 6668 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))) = ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)))
73 remulcl 10021 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝑁 / (𝑃𝑘)) ∈ ℝ) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℝ)
7437, 25, 73sylancr 695 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℝ)
7574recnd 10068 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℂ)
76 2cn 11091 . . . . . . . . . . . 12 2 ∈ ℂ
77 nncan 10310 . . . . . . . . . . . 12 (((2 · (𝑁 / (𝑃𝑘))) ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)) = 2)
7875, 76, 77sylancl 694 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)) = 2)
7972, 78eqtrd 2656 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))) = 2)
8059, 79breqtrd 4679 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < 2)
8130, 36, 38, 42, 80lelttrd 10195 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < 2)
82 df-2 11079 . . . . . . . 8 2 = (1 + 1)
8381, 82syl6breq 4694 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1))
84 1z 11407 . . . . . . . 8 1 ∈ ℤ
85 zleltp1 11428 . . . . . . . 8 ((((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℤ ∧ 1 ∈ ℤ) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1)))
8629, 84, 85sylancl 694 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1)))
8783, 86mpbird 247 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1)
88 iftrue 4092 . . . . . . 7 (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = 1)
8988breq2d 4665 . . . . . 6 (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1))
9087, 89syl5ibrcom 237 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
919nnge1d 11063 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ≤ 𝑘)
9291biantrurd 529 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
936adantl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
9493nnred 11035 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℝ)
95 prmuz2 15408 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
9695adantl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
97 eluz2b1 11759 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℤ ∧ 1 < 𝑃))
9897simprbi 480 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
9996, 98syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < 𝑃)
10094, 99jca 554 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
101100adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
102 elfzelz 12342 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℤ)
103102adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℤ)
1044adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
105104nnrpd 11870 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℝ+)
106105adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℝ+)
107 efexple 25006 . . . . . . . . . . 11 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ 𝑘 ∈ ℤ ∧ (2 · 𝑁) ∈ ℝ+) → ((𝑃𝑘) ≤ (2 · 𝑁) ↔ 𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
108101, 103, 106, 107syl3anc 1326 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑃𝑘) ≤ (2 · 𝑁) ↔ 𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
1099nnzd 11481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℤ)
11084a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈ ℤ)
111104nnred 11035 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
112 1red 10055 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ)
11337a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 2 ∈ ℝ)
114 1lt2 11194 . . . . . . . . . . . . . . . . . 18 1 < 2
115114a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < 2)
116 nnre 11027 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
117116adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
118 0le2 11111 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 2
11937, 118pm3.2i 471 . . . . . . . . . . . . . . . . . . . 20 (2 ∈ ℝ ∧ 0 ≤ 2)
120119a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 ∈ ℝ ∧ 0 ≤ 2))
121 nnge1 11046 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
122121adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ≤ 𝑁)
123 lemul2a 10878 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) ∧ 1 ≤ 𝑁) → (2 · 1) ≤ (2 · 𝑁))
124112, 117, 120, 122, 123syl31anc 1329 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 1) ≤ (2 · 𝑁))
12569, 124syl5eqbrr 4689 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 2 ≤ (2 · 𝑁))
126112, 113, 111, 115, 125ltletrd 10197 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < (2 · 𝑁))
127111, 126rplogcld 24375 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ∈ ℝ+)
12894, 99rplogcld 24375 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘𝑃) ∈ ℝ+)
129127, 128rpdivcld 11889 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ+)
130129rpred 11872 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ)
131130flcld 12599 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ)
132131adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ)
133 elfz 12332 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
134109, 110, 132, 133syl3anc 1326 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
13592, 108, 1343bitr4rd 301 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (𝑃𝑘) ≤ (2 · 𝑁)))
136135notbid 308 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ ¬ (𝑃𝑘) ≤ (2 · 𝑁)))
137111adantr 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℝ)
13811nnred 11035 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℝ)
139137, 138ltnled 10184 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) ↔ ¬ (𝑃𝑘) ≤ (2 · 𝑁)))
140136, 139bitr4d 271 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (2 · 𝑁) < (𝑃𝑘)))
14116rpge0d 11876 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
142141adantrr 753 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
14311nngt0d 11064 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 < (𝑃𝑘))
144 ltdivmul 10898 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑘) ∈ ℝ ∧ 0 < (𝑃𝑘))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
145137, 49, 138, 143, 144syl112anc 1330 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
14663mulid1d 10057 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑃𝑘) · 1) = (𝑃𝑘))
147146breq2d 4665 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < ((𝑃𝑘) · 1) ↔ (2 · 𝑁) < (𝑃𝑘)))
148145, 147bitrd 268 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < (𝑃𝑘)))
149148biimprd 238 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → ((2 · 𝑁) / (𝑃𝑘)) < 1))
150149impr 649 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) < 1)
151 0p1e1 11132 . . . . . . . . . . . . 13 (0 + 1) = 1
152150, 151syl6breqr 4695 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))
15317adantrr 753 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
154 0z 11388 . . . . . . . . . . . . 13 0 ∈ ℤ
155 flbi 12617 . . . . . . . . . . . . 13 ((((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
156153, 154, 155sylancl 694 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
157142, 152, 156mpbir2and 957 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0)
15824rpge0d 11876 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 ≤ (𝑁 / (𝑃𝑘)))
159158adantrr 753 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → 0 ≤ (𝑁 / (𝑃𝑘)))
160116, 21ltaddrp2d 11906 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 𝑁))
161612timesd 11275 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
162160, 161breqtrrd 4681 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 < (2 · 𝑁))
163162ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 < (2 · 𝑁))
164116ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ)
165 lttr 10114 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (𝑃𝑘) ∈ ℝ) → ((𝑁 < (2 · 𝑁) ∧ (2 · 𝑁) < (𝑃𝑘)) → 𝑁 < (𝑃𝑘)))
166164, 137, 138, 165syl3anc 1326 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 < (2 · 𝑁) ∧ (2 · 𝑁) < (𝑃𝑘)) → 𝑁 < (𝑃𝑘)))
167163, 166mpand 711 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → 𝑁 < (𝑃𝑘)))
168 ltdivmul 10898 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑘) ∈ ℝ ∧ 0 < (𝑃𝑘))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
169164, 49, 138, 143, 168syl112anc 1330 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
170146breq2d 4665 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 < ((𝑃𝑘) · 1) ↔ 𝑁 < (𝑃𝑘)))
171169, 170bitrd 268 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < (𝑃𝑘)))
172167, 171sylibrd 249 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → (𝑁 / (𝑃𝑘)) < 1))
173172impr 649 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) < 1)
174173, 151syl6breqr 4695 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) < (0 + 1))
17525adantrr 753 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
176 flbi 12617 . . . . . . . . . . . . . . 15 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
177175, 154, 176sylancl 694 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
178159, 174, 177mpbir2and 957 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (⌊‘(𝑁 / (𝑃𝑘))) = 0)
179178oveq2d 6666 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 0))
180 2t0e0 11183 . . . . . . . . . . . 12 (2 · 0) = 0
181179, 180syl6eq 2672 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 0)
182157, 181oveq12d 6668 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (0 − 0))
183 0m0e0 11130 . . . . . . . . . 10 (0 − 0) = 0
184182, 183syl6eq 2672 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
185 0le0 11110 . . . . . . . . 9 0 ≤ 0
186184, 185syl6eqbr 4692 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0)
187186expr 643 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0))
188140, 187sylbid 230 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0))
189 iffalse 4095 . . . . . . . 8 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = 0)
190189eqcomd 2628 . . . . . . 7 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → 0 = if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
191190breq2d 4665 . . . . . 6 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
192188, 191mpbidi 231 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
19390, 192pm2.61d 170 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
1941, 30, 34, 193fsumle 14531 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
195 pcbcctr 25001 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
196131zred 11482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℝ)
197 flle 12600 . . . . . . . . 9 (((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ ((log‘(2 · 𝑁)) / (log‘𝑃)))
198130, 197syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ ((log‘(2 · 𝑁)) / (log‘𝑃)))
199104nnnn0d 11351 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ0)
20093, 199nnexpcld 13030 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) ∈ ℕ)
201200nnred 11035 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) ∈ ℝ)
202 bernneq3 12992 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℕ0) → (2 · 𝑁) < (𝑃↑(2 · 𝑁)))
20396, 199, 202syl2anc 693 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) < (𝑃↑(2 · 𝑁)))
204111, 201, 203ltled 10185 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ≤ (𝑃↑(2 · 𝑁)))
205105reeflogd 24370 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘(log‘(2 · 𝑁))) = (2 · 𝑁))
20693nnrpd 11870 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℝ+)
207104nnzd 11481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℤ)
208 reexplog 24341 . . . . . . . . . . . . 13 ((𝑃 ∈ ℝ+ ∧ (2 · 𝑁) ∈ ℤ) → (𝑃↑(2 · 𝑁)) = (exp‘((2 · 𝑁) · (log‘𝑃))))
209206, 207, 208syl2anc 693 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) = (exp‘((2 · 𝑁) · (log‘𝑃))))
210209eqcomd 2628 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘((2 · 𝑁) · (log‘𝑃))) = (𝑃↑(2 · 𝑁)))
211204, 205, 2103brtr4d 4685 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃))))
212105relogcld 24369 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ∈ ℝ)
213128rpred 11872 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘𝑃) ∈ ℝ)
214111, 213remulcld 10070 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁) · (log‘𝑃)) ∈ ℝ)
215 efle 14848 . . . . . . . . . . 11 (((log‘(2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁) · (log‘𝑃)) ∈ ℝ) → ((log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)) ↔ (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃)))))
216212, 214, 215syl2anc 693 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)) ↔ (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃)))))
217211, 216mpbird 247 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)))
218212, 111, 128ledivmul2d 11926 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (((log‘(2 · 𝑁)) / (log‘𝑃)) ≤ (2 · 𝑁) ↔ (log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃))))
219217, 218mpbird 247 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ≤ (2 · 𝑁))
220196, 130, 111, 198, 219letrd 10194 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁))
221 eluz 11701 . . . . . . . 8 (((⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁)))
222131, 207, 221syl2anc 693 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁)))
223220, 222mpbird 247 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
224 fzss2 12381 . . . . . 6 ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁)))
225223, 224syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁)))
226 sumhash 15600 . . . . 5 (((1...(2 · 𝑁)) ∈ Fin ∧ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁))) → Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = (#‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
2271, 225, 226syl2anc 693 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = (#‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
228129rprege0d 11879 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ ∧ 0 ≤ ((log‘(2 · 𝑁)) / (log‘𝑃))))
229 flge0nn0 12621 . . . . 5 ((((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ ∧ 0 ≤ ((log‘(2 · 𝑁)) / (log‘𝑃))) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℕ0)
230 hashfz1 13134 . . . . 5 ((⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℕ0 → (#‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))) = (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
231228, 229, 2303syl 18 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (#‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))) = (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
232227, 231eqtr2d 2657 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) = Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
233194, 195, 2323brtr4d 4685 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
234 simpr 477 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
235 nnnn0 11299 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
236 fzctr 12451 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
237 bccl2 13110 . . . . . . 7 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
238235, 236, 2373syl 18 . . . . . 6 (𝑁 ∈ ℕ → ((2 · 𝑁)C𝑁) ∈ ℕ)
239238adantr 481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∈ ℕ)
240234, 239pccld 15555 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
241240nn0zd 11480 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
242 efexple 25006 . . 3 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ ∧ (2 · 𝑁) ∈ ℝ+) → ((𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ↔ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
24394, 99, 241, 105, 242syl211anc 1332 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ↔ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
244233, 243mpbird 247 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wss 3574  ifcif 4086   class class class wbr 4653  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  +crp 11832  ...cfz 12326  cfl 12591  cexp 12860  Ccbc 13089  #chash 13117  Σcsu 14416  expce 14792  cprime 15385   pCnt cpc 15541  logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  bposlem5  25013  bposlem6  25014  chebbnd1lem1  25158
  Copyright terms: Public domain W3C validator