MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirith2 Structured version   Visualization version   GIF version

Theorem dirith2 25217
Description: Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to 𝑁. Theorem 9.4.1 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.u 𝑈 = (Unit‘𝑍)
rpvmasum.b (𝜑𝐴𝑈)
rpvmasum.t 𝑇 = (𝐿 “ {𝐴})
Assertion
Ref Expression
dirith2 (𝜑 → (ℙ ∩ 𝑇) ≈ ℕ)

Proof of Theorem dirith2
Dummy variables 𝑛 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 11026 . . . 4 ℕ ∈ V
2 inss1 3833 . . . . 5 (ℙ ∩ 𝑇) ⊆ ℙ
3 prmnn 15388 . . . . . 6 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
43ssriv 3607 . . . . 5 ℙ ⊆ ℕ
52, 4sstri 3612 . . . 4 (ℙ ∩ 𝑇) ⊆ ℕ
6 ssdomg 8001 . . . 4 (ℕ ∈ V → ((ℙ ∩ 𝑇) ⊆ ℕ → (ℙ ∩ 𝑇) ≼ ℕ))
71, 5, 6mp2 9 . . 3 (ℙ ∩ 𝑇) ≼ ℕ
87a1i 11 . 2 (𝜑 → (ℙ ∩ 𝑇) ≼ ℕ)
9 logno1 24382 . . . 4 ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)
10 rpvmasum.a . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
1110adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → 𝑁 ∈ ℕ)
1211phicld 15477 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (ϕ‘𝑁) ∈ ℕ)
1312nnred 11035 . . . . . . . 8 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (ϕ‘𝑁) ∈ ℝ)
1413adantr 481 . . . . . . 7 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℝ)
15 simpr 477 . . . . . . . . . 10 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (ℙ ∩ 𝑇) ∈ Fin)
16 inss2 3834 . . . . . . . . . 10 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (ℙ ∩ 𝑇)
17 ssfi 8180 . . . . . . . . . 10 (((ℙ ∩ 𝑇) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (ℙ ∩ 𝑇)) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
1815, 16, 17sylancl 694 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
1916sseli 3599 . . . . . . . . . 10 (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) → 𝑛 ∈ (ℙ ∩ 𝑇))
20 simpr 477 . . . . . . . . . . . . . 14 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → 𝑛 ∈ (ℙ ∩ 𝑇))
215, 20sseldi 3601 . . . . . . . . . . . . 13 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → 𝑛 ∈ ℕ)
2221nnrpd 11870 . . . . . . . . . . . 12 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → 𝑛 ∈ ℝ+)
23 relogcl 24322 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → (log‘𝑛) ∈ ℝ)
2524, 21nndivred 11069 . . . . . . . . . 10 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → ((log‘𝑛) / 𝑛) ∈ ℝ)
2619, 25sylan2 491 . . . . . . . . 9 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ((log‘𝑛) / 𝑛) ∈ ℝ)
2718, 26fsumrecl 14465 . . . . . . . 8 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛) ∈ ℝ)
2827adantr 481 . . . . . . 7 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛) ∈ ℝ)
29 rpssre 11843 . . . . . . . 8 + ⊆ ℝ
3013recnd 10068 . . . . . . . 8 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (ϕ‘𝑁) ∈ ℂ)
31 o1const 14350 . . . . . . . 8 ((ℝ+ ⊆ ℝ ∧ (ϕ‘𝑁) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
3229, 30, 31sylancr 695 . . . . . . 7 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
3329a1i 11 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ℝ+ ⊆ ℝ)
34 1red 10055 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → 1 ∈ ℝ)
3515, 25fsumrecl 14465 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → Σ𝑛 ∈ (ℙ ∩ 𝑇)((log‘𝑛) / 𝑛) ∈ ℝ)
36 log1 24332 . . . . . . . . . . . . 13 (log‘1) = 0
3721nnge1d 11063 . . . . . . . . . . . . . 14 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → 1 ≤ 𝑛)
38 1rp 11836 . . . . . . . . . . . . . . 15 1 ∈ ℝ+
39 logleb 24349 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ+𝑛 ∈ ℝ+) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
4038, 22, 39sylancr 695 . . . . . . . . . . . . . 14 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → (1 ≤ 𝑛 ↔ (log‘1) ≤ (log‘𝑛)))
4137, 40mpbid 222 . . . . . . . . . . . . 13 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → (log‘1) ≤ (log‘𝑛))
4236, 41syl5eqbrr 4689 . . . . . . . . . . . 12 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → 0 ≤ (log‘𝑛))
4324, 22, 42divge0d 11912 . . . . . . . . . . 11 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ (ℙ ∩ 𝑇)) → 0 ≤ ((log‘𝑛) / 𝑛))
4416a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (ℙ ∩ 𝑇))
4515, 25, 43, 44fsumless 14528 . . . . . . . . . 10 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛) ≤ Σ𝑛 ∈ (ℙ ∩ 𝑇)((log‘𝑛) / 𝑛))
4645adantr 481 . . . . . . . . 9 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛) ≤ Σ𝑛 ∈ (ℙ ∩ 𝑇)((log‘𝑛) / 𝑛))
4733, 28, 34, 35, 46ello1d 14254 . . . . . . . 8 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ ≤𝑂(1))
48 0red 10041 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → 0 ∈ ℝ)
4919, 43sylan2 491 . . . . . . . . . . 11 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 0 ≤ ((log‘𝑛) / 𝑛))
5018, 26, 49fsumge0 14527 . . . . . . . . . 10 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛))
5150adantr 481 . . . . . . . . 9 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑥 ∈ ℝ+) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛))
5228, 48, 51o1lo12 14269 . . . . . . . 8 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ ≤𝑂(1)))
5347, 52mpbird 247 . . . . . . 7 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ 𝑂(1))
5414, 28, 32, 53o1mul2 14355 . . . . . 6 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛))) ∈ 𝑂(1))
5513, 27remulcld 10070 . . . . . . . . 9 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ ℝ)
5655recnd 10068 . . . . . . . 8 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ ℂ)
5756adantr 481 . . . . . . 7 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) ∈ ℂ)
58 relogcl 24322 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
5958adantl 482 . . . . . . . 8 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
6059recnd 10068 . . . . . . 7 (((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
61 rpvmasum.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
62 rpvmasum.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
63 rpvmasum.u . . . . . . . . 9 𝑈 = (Unit‘𝑍)
64 rpvmasum.b . . . . . . . . 9 (𝜑𝐴𝑈)
65 rpvmasum.t . . . . . . . . 9 𝑇 = (𝐿 “ {𝐴})
6661, 62, 10, 63, 64, 65rplogsum 25216 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
6766adantr 481 . . . . . . 7 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
6857, 60, 67o1dif 14360 . . . . . 6 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → ((𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑛) / 𝑛))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)))
6954, 68mpbid 222 . . . . 5 ((𝜑 ∧ (ℙ ∩ 𝑇) ∈ Fin) → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1))
7069ex 450 . . . 4 (𝜑 → ((ℙ ∩ 𝑇) ∈ Fin → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)))
719, 70mtoi 190 . . 3 (𝜑 → ¬ (ℙ ∩ 𝑇) ∈ Fin)
72 nnenom 12779 . . . . 5 ℕ ≈ ω
73 sdomentr 8094 . . . . 5 (((ℙ ∩ 𝑇) ≺ ℕ ∧ ℕ ≈ ω) → (ℙ ∩ 𝑇) ≺ ω)
7472, 73mpan2 707 . . . 4 ((ℙ ∩ 𝑇) ≺ ℕ → (ℙ ∩ 𝑇) ≺ ω)
75 isfinite2 8218 . . . 4 ((ℙ ∩ 𝑇) ≺ ω → (ℙ ∩ 𝑇) ∈ Fin)
7674, 75syl 17 . . 3 ((ℙ ∩ 𝑇) ≺ ℕ → (ℙ ∩ 𝑇) ∈ Fin)
7771, 76nsyl 135 . 2 (𝜑 → ¬ (ℙ ∩ 𝑇) ≺ ℕ)
78 bren2 7986 . 2 ((ℙ ∩ 𝑇) ≈ ℕ ↔ ((ℙ ∩ 𝑇) ≼ ℕ ∧ ¬ (ℙ ∩ 𝑇) ≺ ℕ))
798, 77, 78sylanbrc 698 1 (𝜑 → (ℙ ∩ 𝑇) ≈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729  ccnv 5113  cima 5117  cfv 5888  (class class class)co 6650  ωcom 7065  cen 7952  cdom 7953  csdm 7954  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  cle 10075  cmin 10266   / cdiv 10684  cn 11020  +crp 11832  ...cfz 12326  cfl 12591  𝑂(1)co1 14217  ≤𝑂(1)clo1 14218  Σcsu 14416  cprime 15385  ϕcphi 15469  Unitcui 18639  ℤRHomczrh 19848  ℤ/nczn 19851  logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-numer 15443  df-denom 15444  df-phi 15471  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-gim 17701  df-ga 17723  df-cntz 17750  df-oppg 17776  df-od 17948  df-gex 17949  df-pgp 17950  df-lsm 18051  df-pj1 18052  df-cmn 18195  df-abl 18196  df-cyg 18280  df-dprd 18394  df-dpj 18395  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-0p 23437  df-limc 23630  df-dv 23631  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046  df-log 24303  df-cxp 24304  df-em 24719  df-cht 24823  df-vma 24824  df-chp 24825  df-ppi 24826  df-mu 24827  df-dchr 24958
This theorem is referenced by:  dirith  25218
  Copyright terms: Public domain W3C validator