MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptcmul Structured version   Visualization version   GIF version

Theorem dvmptcmul 23727
Description: Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptcmul.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
dvmptcmul (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐶 · 𝐴))) = (𝑥𝑋 ↦ (𝐶 · 𝐵)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem dvmptcmul
StepHypRef Expression
1 dvmptadd.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmptcmul.c . . . 4 (𝜑𝐶 ∈ ℂ)
32adantr 481 . . 3 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
4 0cnd 10033 . . 3 ((𝜑𝑥𝑋) → 0 ∈ ℂ)
52adantr 481 . . . 4 ((𝜑𝑥𝑆) → 𝐶 ∈ ℂ)
6 0cnd 10033 . . . 4 ((𝜑𝑥𝑆) → 0 ∈ ℂ)
71, 2dvmptc 23721 . . . 4 (𝜑 → (𝑆 D (𝑥𝑆𝐶)) = (𝑥𝑆 ↦ 0))
8 dvmptadd.da . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
98dmeqd 5326 . . . . . 6 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
10 dvmptadd.b . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵𝑉)
1110ralrimiva 2966 . . . . . . 7 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
12 dmmptg 5632 . . . . . . 7 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
1311, 12syl 17 . . . . . 6 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
149, 13eqtrd 2656 . . . . 5 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
15 dvbsss 23666 . . . . 5 dom (𝑆 D (𝑥𝑋𝐴)) ⊆ 𝑆
1614, 15syl6eqssr 3656 . . . 4 (𝜑𝑋𝑆)
17 eqid 2622 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
18 eqid 2622 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1918cnfldtopon 22586 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
20 recnprss 23668 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
211, 20syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
22 resttopon 20965 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
2319, 21, 22sylancr 695 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
24 topontop 20718 . . . . . . 7 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
2523, 24syl 17 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
26 toponuni 20719 . . . . . . . 8 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
2723, 26syl 17 . . . . . . 7 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
2816, 27sseqtrd 3641 . . . . . 6 (𝜑𝑋 ((TopOpen‘ℂfld) ↾t 𝑆))
29 eqid 2622 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
3029ntrss2 20861 . . . . . 6 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
3125, 28, 30syl2anc 693 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
32 dvmptadd.a . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
33 eqid 2622 . . . . . . . 8 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
3432, 33fmptd 6385 . . . . . . 7 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
3521, 34, 16, 17, 18dvbssntr 23664 . . . . . 6 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
3614, 35eqsstr3d 3640 . . . . 5 (𝜑𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
3731, 36eqssd 3620 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋)
381, 5, 6, 7, 16, 17, 18, 37dvmptres2 23725 . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋 ↦ 0))
391, 3, 4, 38, 32, 10, 8dvmptmul 23724 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐶 · 𝐴))) = (𝑥𝑋 ↦ ((0 · 𝐴) + (𝐵 · 𝐶))))
4032mul02d 10234 . . . . 5 ((𝜑𝑥𝑋) → (0 · 𝐴) = 0)
4140oveq1d 6665 . . . 4 ((𝜑𝑥𝑋) → ((0 · 𝐴) + (𝐵 · 𝐶)) = (0 + (𝐵 · 𝐶)))
421, 32, 10, 8dvmptcl 23722 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
4342, 3mulcld 10060 . . . . 5 ((𝜑𝑥𝑋) → (𝐵 · 𝐶) ∈ ℂ)
4443addid2d 10237 . . . 4 ((𝜑𝑥𝑋) → (0 + (𝐵 · 𝐶)) = (𝐵 · 𝐶))
4542, 3mulcomd 10061 . . . 4 ((𝜑𝑥𝑋) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
4641, 44, 453eqtrd 2660 . . 3 ((𝜑𝑥𝑋) → ((0 · 𝐴) + (𝐵 · 𝐶)) = (𝐶 · 𝐵))
4746mpteq2dva 4744 . 2 (𝜑 → (𝑥𝑋 ↦ ((0 · 𝐴) + (𝐵 · 𝐶))) = (𝑥𝑋 ↦ (𝐶 · 𝐵)))
4839, 47eqtrd 2656 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐶 · 𝐴))) = (𝑥𝑋 ↦ (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574  {cpr 4179   cuni 4436  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941  t crest 16081  TopOpenctopn 16082  fldccnfld 19746  Topctop 20698  TopOnctopon 20715  intcnt 20821   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvmptdivc  23728  dvmptneg  23729  dvmptre  23732  dvmptim  23733  dvsincos  23744  cmvth  23754  dvlipcn  23757  dvivthlem1  23771  dvfsumle  23784  dvfsumabs  23786  dvfsumlem2  23790  dvply1  24039  dvtaylp  24124  pserdvlem2  24182  pige3  24269  dvcxp1  24481  dvcxp2  24482  dvcncxp1  24484  dvatan  24662  divsqrtsumlem  24706  lgamgulmlem2  24756  logexprlim  24950  log2sumbnd  25233  itgexpif  30684  dvasin  33496  areacirclem1  33500  lhe4.4ex1a  38528  expgrowthi  38532  expgrowth  38534  fourierdlem39  40363
  Copyright terms: Public domain W3C validator