MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumbnd2 Structured version   Visualization version   Unicode version

Theorem pntrsumbnd2 25256
Description: A bound on a sum over  R. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrsumbnd2  |-  E. c  e.  RR+  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c
Distinct variable groups:    k, a, m, n    k, c, m, n, R
Allowed substitution hint:    R( a)

Proof of Theorem pntrsumbnd2
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 pntrval.r . . 3  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
21pntrsumbnd 25255 . 2  |-  E. b  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b
3 2rp 11837 . . . . . 6  |-  2  e.  RR+
4 rpmulcl 11855 . . . . . 6  |-  ( ( 2  e.  RR+  /\  b  e.  RR+ )  ->  (
2  x.  b )  e.  RR+ )
53, 4mpan 706 . . . . 5  |-  ( b  e.  RR+  ->  ( 2  x.  b )  e.  RR+ )
65adantr 481 . . . 4  |-  ( ( b  e.  RR+  /\  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b
)  ->  ( 2  x.  b )  e.  RR+ )
7 nnz 11399 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  ZZ )
87adantl 482 . . . . . . . 8  |-  ( ( ( b  e.  RR+  /\ 
A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b )  /\  k  e.  NN )  ->  k  e.  ZZ )
9 peano2zm 11420 . . . . . . . 8  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
108, 9syl 17 . . . . . . 7  |-  ( ( ( b  e.  RR+  /\ 
A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b )  /\  k  e.  NN )  ->  (
k  -  1 )  e.  ZZ )
11 simplr 792 . . . . . . 7  |-  ( ( ( b  e.  RR+  /\ 
A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b )  /\  k  e.  NN )  ->  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )
12 oveq2 6658 . . . . . . . . . . 11  |-  ( m  =  ( k  - 
1 )  ->  (
1 ... m )  =  ( 1 ... (
k  -  1 ) ) )
1312sumeq1d 14431 . . . . . . . . . 10  |-  ( m  =  ( k  - 
1 )  ->  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  =  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )
1413fveq2d 6195 . . . . . . . . 9  |-  ( m  =  ( k  - 
1 )  ->  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  =  ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )
1514breq1d 4663 . . . . . . . 8  |-  ( m  =  ( k  - 
1 )  ->  (
( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b  <->  ( abs ` 
sum_ n  e.  (
1 ... ( k  - 
1 ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )
)
1615rspcv 3305 . . . . . . 7  |-  ( ( k  -  1 )  e.  ZZ  ->  ( A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b  ->  ( abs ` 
sum_ n  e.  (
1 ... ( k  - 
1 ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )
)
1710, 11, 16sylc 65 . . . . . 6  |-  ( ( ( b  e.  RR+  /\ 
A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b )  /\  k  e.  NN )  ->  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b
)
185ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  ( 2  x.  b )  e.  RR+ )
1918rpge0d 11876 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  0  <_  (
2  x.  b ) )
20 sumeq1 14419 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k ... m )  =  (/)  ->  sum_ n  e.  ( k ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  =  sum_ n  e.  (/)  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )
21 sum0 14452 . . . . . . . . . . . . . . . . . . 19  |-  sum_ n  e.  (/)  ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  =  0
2220, 21syl6eq 2672 . . . . . . . . . . . . . . . . . 18  |-  ( ( k ... m )  =  (/)  ->  sum_ n  e.  ( k ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  =  0 )
2322abs00bd 14031 . . . . . . . . . . . . . . . . 17  |-  ( ( k ... m )  =  (/)  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  =  0 )
2423breq1d 4663 . . . . . . . . . . . . . . . 16  |-  ( ( k ... m )  =  (/)  ->  ( ( abs `  sum_ n  e.  ( k ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
( 2  x.  b
)  <->  0  <_  (
2  x.  b ) ) )
2519, 24syl5ibrcom 237 . . . . . . . . . . . . . . 15  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  ( ( k ... m )  =  (/)  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
2625imp 445 . . . . . . . . . . . . . 14  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  ( k ... m )  =  (/) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) )
2726a1d 25 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  ( k ... m )  =  (/) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b  /\  ( abs ` 
sum_ n  e.  (
1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
28 fzn0 12355 . . . . . . . . . . . . . 14  |-  ( ( k ... m )  =/=  (/)  <->  m  e.  ( ZZ>=
`  k ) )
29 fzfid 12772 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( 1 ... m )  e.  Fin )
30 elfznn 12370 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( 1 ... m )  ->  n  e.  NN )
31 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  NN )  ->  n  e.  NN )
3231nnrpd 11870 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  NN )  ->  n  e.  RR+ )
331pntrf 25252 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  R : RR+
--> RR
3433ffvelrni 6358 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  RR+  ->  ( R `
 n )  e.  RR )
3532, 34syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  NN )  ->  ( R `
 n )  e.  RR )
3631peano2nnd 11037 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  NN )  ->  ( n  +  1 )  e.  NN )
3731, 36nnmulcld 11068 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  NN )  ->  ( n  x.  ( n  + 
1 ) )  e.  NN )
3835, 37nndivred 11069 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  NN )  ->  ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  e.  RR )
3930, 38sylan2 491 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  ( 1 ... m
) )  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  RR )
4029, 39fsumrecl 14465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  RR )
4140recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
4241abscld 14175 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  e.  RR )
43 fzfid 12772 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( 1 ... ( k  -  1 ) )  e.  Fin )
44 elfznn 12370 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( 1 ... ( k  -  1 ) )  ->  n  e.  NN )
4544, 38sylan2 491 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  ( 1 ... (
k  -  1 ) ) )  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  RR )
4643, 45fsumrecl 14465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  RR )
4746recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
4847abscld 14175 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  e.  RR )
49 simplll 798 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  b  e.  RR+ )
5049rpred 11872 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  b  e.  RR )
51 le2add 10510 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  e.  RR  /\  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  e.  RR )  /\  ( b  e.  RR  /\  b  e.  RR ) )  -> 
( ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b  /\  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )  -> 
( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( b  +  b ) ) )
5242, 48, 50, 50, 51syl22anc 1327 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b  /\  ( abs ` 
sum_ n  e.  (
1 ... ( k  - 
1 ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )  ->  ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( b  +  b ) ) )
5350recnd 10068 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  b  e.  CC )
54532timesd 11275 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( 2  x.  b )  =  ( b  +  b ) )
5554breq2d 4665 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( 2  x.  b )  <->  ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )  <_  ( b  +  b ) ) )
56 simpllr 799 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  k  e.  NN )
5756nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  k  e.  RR )
5857ltm1d 10956 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( k  - 
1 )  <  k
)
59 fzdisj 12368 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( k  -  1 )  <  k  ->  (
( 1 ... (
k  -  1 ) )  i^i  ( k ... m ) )  =  (/) )
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( 1 ... ( k  - 
1 ) )  i^i  ( k ... m
) )  =  (/) )
6156nncnd 11036 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  k  e.  CC )
62 ax-1cn 9994 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  1  e.  CC
63 npcan 10290 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  - 
1 )  +  1 )  =  k )
6461, 62, 63sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( k  -  1 )  +  1 )  =  k )
6564, 56eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( k  -  1 )  +  1 )  e.  NN )
66 nnuz 11723 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  NN  =  ( ZZ>= `  1 )
6765, 66syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( k  -  1 )  +  1 )  e.  (
ZZ>= `  1 ) )
6856nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  k  e.  ZZ )
6968, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( k  - 
1 )  e.  ZZ )
70 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  k  e.  NN )
7170nncnd 11036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  k  e.  CC )
7271, 62, 63sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  ( ( k  -  1 )  +  1 )  =  k )
7372fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  ( ZZ>= `  (
( k  -  1 )  +  1 ) )  =  ( ZZ>= `  k ) )
7473eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  ( m  e.  ( ZZ>= `  ( (
k  -  1 )  +  1 ) )  <-> 
m  e.  ( ZZ>= `  k ) ) )
7574biimpar 502 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  m  e.  (
ZZ>= `  ( ( k  -  1 )  +  1 ) ) )
76 peano2uzr 11743 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( k  -  1 )  e.  ZZ  /\  m  e.  ( ZZ>= `  ( ( k  - 
1 )  +  1 ) ) )  ->  m  e.  ( ZZ>= `  ( k  -  1 ) ) )
7769, 75, 76syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  m  e.  (
ZZ>= `  ( k  - 
1 ) ) )
78 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( k  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  m  e.  ( ZZ>= `  ( k  -  1 ) ) )  ->  ( 1 ... m )  =  ( ( 1 ... ( k  -  1 ) )  u.  (
( ( k  - 
1 )  +  1 ) ... m ) ) )
7967, 77, 78syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( 1 ... m )  =  ( ( 1 ... (
k  -  1 ) )  u.  ( ( ( k  -  1 )  +  1 ) ... m ) ) )
8064oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( k  -  1 )  +  1 ) ... m )  =  ( k ... m ) )
8180uneq2d 3767 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( 1 ... ( k  - 
1 ) )  u.  ( ( ( k  -  1 )  +  1 ) ... m
) )  =  ( ( 1 ... (
k  -  1 ) )  u.  ( k ... m ) ) )
8279, 81eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( 1 ... m )  =  ( ( 1 ... (
k  -  1 ) )  u.  ( k ... m ) ) )
8339recnd 10068 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  ( 1 ... m
) )  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  CC )
8460, 82, 29, 83fsumsplit 14471 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  =  ( sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  + 
sum_ n  e.  (
k ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) ) )
8584oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  + 
sum_ n  e.  (
k ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  -  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )
86 fzfid 12772 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( k ... m )  e.  Fin )
87 elfzuz 12338 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  e.  ( k ... m )  ->  n  e.  ( ZZ>= `  k )
)
88 eluznn 11758 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( k  e.  NN  /\  n  e.  ( ZZ>= `  k ) )  ->  n  e.  NN )
8956, 87, 88syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  ( k ... m
) )  ->  n  e.  NN )
9089, 38syldan 487 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  ( ZZ>= `  k )
)  /\  n  e.  ( k ... m
) )  ->  (
( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  e.  RR )
9186, 90fsumrecl 14465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  RR )
9291recnd 10068 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) )  e.  CC )
9347, 92pncan2d 10394 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) )  + 
sum_ n  e.  (
k ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  -  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  = 
sum_ n  e.  (
k ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )
9485, 93eqtrd 2656 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  =  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )
9594fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  -  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) ) )  =  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )
9641, 47abs2dif2d 14197 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) )  -  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) ) )  <_ 
( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) ) )
9795, 96eqbrtrrd 4677 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) ) )
9892abscld 14175 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  e.  RR )
9942, 48readdcld 10069 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) ) )  e.  RR )
100 2re 11090 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  RR
101100a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  2  e.  RR )
102101, 50remulcld 10070 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( 2  x.  b )  e.  RR )
103 letr 10131 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  e.  RR  /\  (
( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  e.  RR  /\  ( 2  x.  b
)  e.  RR )  ->  ( ( ( abs `  sum_ n  e.  ( k ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  /\  ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( 2  x.  b ) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
10498, 99, 102, 103syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( k ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  /\  ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( 2  x.  b ) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
10597, 104mpand 711 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( 2  x.  b )  -> 
( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
10655, 105sylbird 250 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  +  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) ) )  <_  ( b  +  b )  -> 
( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
10752, 106syld 47 . . . . . . . . . . . . . . 15  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b  /\  ( abs ` 
sum_ n  e.  (
1 ... ( k  - 
1 ) ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
108107ancomsd 470 . . . . . . . . . . . . . 14  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  m  e.  (
ZZ>= `  k ) )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b  /\  ( abs ` 
sum_ n  e.  (
1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
10928, 108sylan2b 492 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  ( k ... m )  =/=  (/) )  -> 
( ( ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b  /\  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )  -> 
( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
11027, 109pm2.61dane 2881 . . . . . . . . . . . 12  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  ->  ( ( ( abs `  sum_ n  e.  ( 1 ... (
k  -  1 ) ) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b  /\  ( abs ` 
sum_ n  e.  (
1 ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  b )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
111110imp 445 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  m  e.  ZZ )  /\  ( ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b  /\  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b ) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) )
112111an4s 869 . . . . . . . . . 10  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )  /\  ( m  e.  ZZ  /\  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b ) )  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) )
113112expr 643 . . . . . . . . 9  |-  ( ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )  /\  m  e.  ZZ )  ->  ( ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b  ->  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  (
2  x.  b ) ) )
114113ralimdva 2962 . . . . . . . 8  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )  -> 
( A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b  ->  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
115114impancom 456 . . . . . . 7  |-  ( ( ( b  e.  RR+  /\  k  e.  NN )  /\  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b )  -> 
( ( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b  ->  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
116115an32s 846 . . . . . 6  |-  ( ( ( b  e.  RR+  /\ 
A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b )  /\  k  e.  NN )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( k  -  1 ) ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b  ->  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) ) )
11717, 116mpd 15 . . . . 5  |-  ( ( ( b  e.  RR+  /\ 
A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m
) ( ( R `
 n )  / 
( n  x.  (
n  +  1 ) ) ) )  <_ 
b )  /\  k  e.  NN )  ->  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) )
118117ralrimiva 2966 . . . 4  |-  ( ( b  e.  RR+  /\  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b
)  ->  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) )
119 breq2 4657 . . . . . 6  |-  ( c  =  ( 2  x.  b )  ->  (
( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c  <->  ( abs ` 
sum_ n  e.  (
k ... m ) ( ( R `  n
)  /  ( n  x.  ( n  + 
1 ) ) ) )  <_  ( 2  x.  b ) ) )
1201192ralbidv 2989 . . . . 5  |-  ( c  =  ( 2  x.  b )  ->  ( A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  c  <->  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  (
2  x.  b ) ) )
121120rspcev 3309 . . . 4  |-  ( ( ( 2  x.  b
)  e.  RR+  /\  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  ( 2  x.  b ) )  ->  E. c  e.  RR+  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c )
1226, 118, 121syl2anc 693 . . 3  |-  ( ( b  e.  RR+  /\  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  b
)  ->  E. c  e.  RR+  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c )
123122rexlimiva 3028 . 2  |-  ( E. b  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  b  ->  E. c  e.  RR+  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c )
1242, 123ax-mp 5 1  |-  E. c  e.  RR+  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  ( k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  c
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    u. cun 3572    i^i cin 3573   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326   abscabs 13974   sum_csu 14416  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-em 24719  df-cht 24823  df-vma 24824  df-chp 24825  df-ppi 24826
This theorem is referenced by:  pntpbnd  25277
  Copyright terms: Public domain W3C validator