MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvgt0lem1 Structured version   Visualization version   Unicode version

Theorem dvgt0lem1 23765
Description: Lemma for dvgt0 23767 and dvlt0 23768. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvgt0.a  |-  ( ph  ->  A  e.  RR )
dvgt0.b  |-  ( ph  ->  B  e.  RR )
dvgt0.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
dvgt0lem.d  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> S )
Assertion
Ref Expression
dvgt0lem1  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( ( ( F `
 Y )  -  ( F `  X ) )  /  ( Y  -  X ) )  e.  S )

Proof of Theorem dvgt0lem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 iccssxr 12256 . . . . . . 7  |-  ( A [,] B )  C_  RR*
2 simplrl 800 . . . . . . 7  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  X  e.  ( A [,] B ) )
31, 2sseldi 3601 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  X  e.  RR* )
4 simplrr 801 . . . . . . 7  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  Y  e.  ( A [,] B ) )
51, 4sseldi 3601 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  Y  e.  RR* )
6 dvgt0.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
7 dvgt0.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
8 iccssre 12255 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
96, 7, 8syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( A [,] B
)  C_  RR )
109ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( A [,] B
)  C_  RR )
1110, 2sseldd 3604 . . . . . . 7  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  X  e.  RR )
1210, 4sseldd 3604 . . . . . . 7  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  Y  e.  RR )
13 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  X  <  Y )
1411, 12, 13ltled 10185 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  X  <_  Y )
15 ubicc2 12289 . . . . . 6  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  Y  e.  ( X [,] Y
) )
163, 5, 14, 15syl3anc 1326 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  Y  e.  ( X [,] Y ) )
17 fvres 6207 . . . . 5  |-  ( Y  e.  ( X [,] Y )  ->  (
( F  |`  ( X [,] Y ) ) `
 Y )  =  ( F `  Y
) )
1816, 17syl 17 . . . 4  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( ( F  |`  ( X [,] Y ) ) `  Y )  =  ( F `  Y ) )
19 lbicc2 12288 . . . . . 6  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  X  e.  ( X [,] Y
) )
203, 5, 14, 19syl3anc 1326 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  X  e.  ( X [,] Y ) )
21 fvres 6207 . . . . 5  |-  ( X  e.  ( X [,] Y )  ->  (
( F  |`  ( X [,] Y ) ) `
 X )  =  ( F `  X
) )
2220, 21syl 17 . . . 4  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( ( F  |`  ( X [,] Y ) ) `  X )  =  ( F `  X ) )
2318, 22oveq12d 6668 . . 3  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( ( ( F  |`  ( X [,] Y
) ) `  Y
)  -  ( ( F  |`  ( X [,] Y ) ) `  X ) )  =  ( ( F `  Y )  -  ( F `  X )
) )
2423oveq1d 6665 . 2  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( ( ( ( F  |`  ( X [,] Y ) ) `  Y )  -  (
( F  |`  ( X [,] Y ) ) `
 X ) )  /  ( Y  -  X ) )  =  ( ( ( F `
 Y )  -  ( F `  X ) )  /  ( Y  -  X ) ) )
25 iccss2 12244 . . . . . 6  |-  ( ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B ) )  -> 
( X [,] Y
)  C_  ( A [,] B ) )
2625ad2antlr 763 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( X [,] Y
)  C_  ( A [,] B ) )
27 dvgt0.f . . . . . 6  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
2827ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  F  e.  ( ( A [,] B ) -cn-> RR ) )
29 rescncf 22700 . . . . 5  |-  ( ( X [,] Y ) 
C_  ( A [,] B )  ->  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  ( F  |`  ( X [,] Y
) )  e.  ( ( X [,] Y
) -cn-> RR ) ) )
3026, 28, 29sylc 65 . . . 4  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( F  |`  ( X [,] Y ) )  e.  ( ( X [,] Y ) -cn-> RR ) )
31 dvgt0lem.d . . . . . . . 8  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> S )
3231ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( RR  _D  F
) : ( A (,) B ) --> S )
336ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  A  e.  RR )
3433rexrd 10089 . . . . . . . . 9  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  A  e.  RR* )
357ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  B  e.  RR )
36 elicc2 12238 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
3733, 35, 36syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
382, 37mpbid 222 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) )
3938simp2d 1074 . . . . . . . . 9  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  A  <_  X )
40 iooss1 12210 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  A  <_  X )  ->  ( X (,) Y )  C_  ( A (,) Y ) )
4134, 39, 40syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( X (,) Y
)  C_  ( A (,) Y ) )
4235rexrd 10089 . . . . . . . . 9  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  B  e.  RR* )
43 elicc2 12238 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Y  e.  ( A [,] B )  <-> 
( Y  e.  RR  /\  A  <_  Y  /\  Y  <_  B ) ) )
4433, 35, 43syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( Y  e.  ( A [,] B )  <-> 
( Y  e.  RR  /\  A  <_  Y  /\  Y  <_  B ) ) )
454, 44mpbid 222 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( Y  e.  RR  /\  A  <_  Y  /\  Y  <_  B ) )
4645simp3d 1075 . . . . . . . . 9  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  Y  <_  B )
47 iooss2 12211 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  Y  <_  B )  ->  ( A (,) Y )  C_  ( A (,) B ) )
4842, 46, 47syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( A (,) Y
)  C_  ( A (,) B ) )
4941, 48sstrd 3613 . . . . . . 7  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( X (,) Y
)  C_  ( A (,) B ) )
5032, 49fssresd 6071 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( ( RR  _D  F )  |`  ( X (,) Y ) ) : ( X (,) Y ) --> S )
51 ax-resscn 9993 . . . . . . . . . 10  |-  RR  C_  CC
5251a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  RR  C_  CC )
53 cncff 22696 . . . . . . . . . . . 12  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
5427, 53syl 17 . . . . . . . . . . 11  |-  ( ph  ->  F : ( A [,] B ) --> RR )
5554ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  F : ( A [,] B ) --> RR )
56 fss 6056 . . . . . . . . . 10  |-  ( ( F : ( A [,] B ) --> RR 
/\  RR  C_  CC )  ->  F : ( A [,] B ) --> CC )
5755, 51, 56sylancl 694 . . . . . . . . 9  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  F : ( A [,] B ) --> CC )
58 iccssre 12255 . . . . . . . . . 10  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X [,] Y
)  C_  RR )
5911, 12, 58syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( X [,] Y
)  C_  RR )
60 eqid 2622 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
6160tgioo2 22606 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
6260, 61dvres 23675 . . . . . . . . 9  |-  ( ( ( RR  C_  CC  /\  F : ( A [,] B ) --> CC )  /\  ( ( A [,] B ) 
C_  RR  /\  ( X [,] Y )  C_  RR ) )  ->  ( RR  _D  ( F  |`  ( X [,] Y ) ) )  =  ( ( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( X [,] Y ) ) ) )
6352, 57, 10, 59, 62syl22anc 1327 . . . . . . . 8  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( RR  _D  ( F  |`  ( X [,] Y ) ) )  =  ( ( RR 
_D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) ) ) )
64 iccntr 22624 . . . . . . . . . 10  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
6511, 12, 64syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
6665reseq2d 5396 . . . . . . . 8  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( ( RR  _D  F )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) ) )  =  ( ( RR 
_D  F )  |`  ( X (,) Y ) ) )
6763, 66eqtrd 2656 . . . . . . 7  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( RR  _D  ( F  |`  ( X [,] Y ) ) )  =  ( ( RR 
_D  F )  |`  ( X (,) Y ) ) )
6867feq1d 6030 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( ( RR  _D  ( F  |`  ( X [,] Y ) ) ) : ( X (,) Y ) --> S  <-> 
( ( RR  _D  F )  |`  ( X (,) Y ) ) : ( X (,) Y ) --> S ) )
6950, 68mpbird 247 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( RR  _D  ( F  |`  ( X [,] Y ) ) ) : ( X (,) Y ) --> S )
70 fdm 6051 . . . . 5  |-  ( ( RR  _D  ( F  |`  ( X [,] Y
) ) ) : ( X (,) Y
) --> S  ->  dom  ( RR  _D  ( F  |`  ( X [,] Y ) ) )  =  ( X (,) Y ) )
7169, 70syl 17 . . . 4  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  dom  ( RR  _D  ( F  |`  ( X [,] Y ) ) )  =  ( X (,) Y ) )
7211, 12, 13, 30, 71mvth 23755 . . 3  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  ->  E. z  e.  ( X (,) Y ) ( ( RR  _D  ( F  |`  ( X [,] Y ) ) ) `
 z )  =  ( ( ( ( F  |`  ( X [,] Y ) ) `  Y )  -  (
( F  |`  ( X [,] Y ) ) `
 X ) )  /  ( Y  -  X ) ) )
7369ffvelrnda 6359 . . . . 5  |-  ( ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B ) ) )  /\  X  <  Y
)  /\  z  e.  ( X (,) Y ) )  ->  ( ( RR  _D  ( F  |`  ( X [,] Y ) ) ) `  z
)  e.  S )
74 eleq1 2689 . . . . 5  |-  ( ( ( RR  _D  ( F  |`  ( X [,] Y ) ) ) `
 z )  =  ( ( ( ( F  |`  ( X [,] Y ) ) `  Y )  -  (
( F  |`  ( X [,] Y ) ) `
 X ) )  /  ( Y  -  X ) )  -> 
( ( ( RR 
_D  ( F  |`  ( X [,] Y ) ) ) `  z
)  e.  S  <->  ( (
( ( F  |`  ( X [,] Y ) ) `  Y )  -  ( ( F  |`  ( X [,] Y
) ) `  X
) )  /  ( Y  -  X )
)  e.  S ) )
7573, 74syl5ibcom 235 . . . 4  |-  ( ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B ) ) )  /\  X  <  Y
)  /\  z  e.  ( X (,) Y ) )  ->  ( (
( RR  _D  ( F  |`  ( X [,] Y ) ) ) `
 z )  =  ( ( ( ( F  |`  ( X [,] Y ) ) `  Y )  -  (
( F  |`  ( X [,] Y ) ) `
 X ) )  /  ( Y  -  X ) )  -> 
( ( ( ( F  |`  ( X [,] Y ) ) `  Y )  -  (
( F  |`  ( X [,] Y ) ) `
 X ) )  /  ( Y  -  X ) )  e.  S ) )
7675rexlimdva 3031 . . 3  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( E. z  e.  ( X (,) Y
) ( ( RR 
_D  ( F  |`  ( X [,] Y ) ) ) `  z
)  =  ( ( ( ( F  |`  ( X [,] Y ) ) `  Y )  -  ( ( F  |`  ( X [,] Y
) ) `  X
) )  /  ( Y  -  X )
)  ->  ( (
( ( F  |`  ( X [,] Y ) ) `  Y )  -  ( ( F  |`  ( X [,] Y
) ) `  X
) )  /  ( Y  -  X )
)  e.  S ) )
7772, 76mpd 15 . 2  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( ( ( ( F  |`  ( X [,] Y ) ) `  Y )  -  (
( F  |`  ( X [,] Y ) ) `
 X ) )  /  ( Y  -  X ) )  e.  S )
7824, 77eqeltrrd 2702 1  |-  ( ( ( ph  /\  ( X  e.  ( A [,] B )  /\  Y  e.  ( A [,] B
) ) )  /\  X  <  Y )  -> 
( ( ( F `
 Y )  -  ( F `  X ) )  /  ( Y  -  X ) )  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   (,)cioo 12175   [,]cicc 12178   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   intcnt 20821   -cn->ccncf 22679    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvgt0  23767  dvlt0  23768  dvge0  23769
  Copyright terms: Public domain W3C validator