Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icoseg Structured version   Visualization version   Unicode version

Theorem dya2icoseg 30339
Description: For any point and any closed-below, open-above interval of  RR centered on that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0  |-  J  =  ( topGen `  ran  (,) )
dya2ioc.1  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
dya2icoseg.1  |-  N  =  ( |_ `  (
1  -  ( 2 logb  D ) ) )
Assertion
Ref Expression
dya2icoseg  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  ->  E. b  e.  ran  I ( X  e.  b  /\  b  C_  ( ( X  -  D ) (,) ( X  +  D )
) ) )
Distinct variable groups:    x, n    x, I    D, b    I, b, x    N, b, x    X, b, x
Allowed substitution hints:    D( x, n)    I( n)    J( x, n, b)    N( n)    X( n)

Proof of Theorem dya2icoseg
StepHypRef Expression
1 dya2ioc.1 . . . . 5  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
2 ovex 6678 . . . . 5  |-  ( ( x  /  ( 2 ^ n ) ) [,) ( ( x  +  1 )  / 
( 2 ^ n
) ) )  e. 
_V
31, 2fnmpt2i 7239 . . . 4  |-  I  Fn  ( ZZ  X.  ZZ )
43a1i 11 . . 3  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  ->  I  Fn  ( ZZ  X.  ZZ ) )
5 simpl 473 . . . . 5  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  ->  X  e.  RR )
6 2rp 11837 . . . . . . 7  |-  2  e.  RR+
7 dya2icoseg.1 . . . . . . . 8  |-  N  =  ( |_ `  (
1  -  ( 2 logb  D ) ) )
8 1red 10055 . . . . . . . . . 10  |-  ( D  e.  RR+  ->  1  e.  RR )
9 2z 11409 . . . . . . . . . . . 12  |-  2  e.  ZZ
10 uzid 11702 . . . . . . . . . . . 12  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
119, 10ax-mp 5 . . . . . . . . . . 11  |-  2  e.  ( ZZ>= `  2 )
12 relogbzcl 24512 . . . . . . . . . . 11  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  D  e.  RR+ )  ->  (
2 logb  D )  e.  RR )
1311, 12mpan 706 . . . . . . . . . 10  |-  ( D  e.  RR+  ->  ( 2 logb  D )  e.  RR )
148, 13resubcld 10458 . . . . . . . . 9  |-  ( D  e.  RR+  ->  ( 1  -  ( 2 logb  D ) )  e.  RR )
1514flcld 12599 . . . . . . . 8  |-  ( D  e.  RR+  ->  ( |_
`  ( 1  -  ( 2 logb  D ) ) )  e.  ZZ )
167, 15syl5eqel 2705 . . . . . . 7  |-  ( D  e.  RR+  ->  N  e.  ZZ )
17 rpexpcl 12879 . . . . . . . 8  |-  ( ( 2  e.  RR+  /\  N  e.  ZZ )  ->  (
2 ^ N )  e.  RR+ )
1817rpred 11872 . . . . . . 7  |-  ( ( 2  e.  RR+  /\  N  e.  ZZ )  ->  (
2 ^ N )  e.  RR )
196, 16, 18sylancr 695 . . . . . 6  |-  ( D  e.  RR+  ->  ( 2 ^ N )  e.  RR )
2019adantl 482 . . . . 5  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( 2 ^ N
)  e.  RR )
215, 20remulcld 10070 . . . 4  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  x.  (
2 ^ N ) )  e.  RR )
2221flcld 12599 . . 3  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( X  x.  ( 2 ^ N ) ) )  e.  ZZ )
2316adantl 482 . . 3  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  ->  N  e.  ZZ )
24 fnovrn 6809 . . 3  |-  ( ( I  Fn  ( ZZ 
X.  ZZ )  /\  ( |_ `  ( X  x.  ( 2 ^ N ) ) )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( |_ `  ( X  x.  ( 2 ^ N ) ) ) I N )  e.  ran  I )
254, 22, 23, 24syl3anc 1326 . 2  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( |_ `  ( X  x.  (
2 ^ N ) ) ) I N )  e.  ran  I
)
2622zred 11482 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( X  x.  ( 2 ^ N ) ) )  e.  RR )
276, 23, 17sylancr 695 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( 2 ^ N
)  e.  RR+ )
28 fllelt 12598 . . . . . . . 8  |-  ( ( X  x.  ( 2 ^ N ) )  e.  RR  ->  (
( |_ `  ( X  x.  ( 2 ^ N ) ) )  <_  ( X  x.  ( 2 ^ N
) )  /\  ( X  x.  ( 2 ^ N ) )  <  ( ( |_
`  ( X  x.  ( 2 ^ N
) ) )  +  1 ) ) )
2921, 28syl 17 . . . . . . 7  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( |_ `  ( X  x.  (
2 ^ N ) ) )  <_  ( X  x.  ( 2 ^ N ) )  /\  ( X  x.  ( 2 ^ N
) )  <  (
( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 ) ) )
3029simpld 475 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( X  x.  ( 2 ^ N ) ) )  <_  ( X  x.  ( 2 ^ N
) ) )
3126, 21, 27, 30lediv1dd 11930 . . . . 5  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( |_ `  ( X  x.  (
2 ^ N ) ) )  /  (
2 ^ N ) )  <_  ( ( X  x.  ( 2 ^ N ) )  /  ( 2 ^ N ) ) )
325recnd 10068 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  ->  X  e.  CC )
3320recnd 10068 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( 2 ^ N
)  e.  CC )
34 2cnd 11093 . . . . . . 7  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
2  e.  CC )
35 2ne0 11113 . . . . . . . 8  |-  2  =/=  0
3635a1i 11 . . . . . . 7  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
2  =/=  0 )
3734, 36, 23expne0d 13014 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( 2 ^ N
)  =/=  0 )
3832, 33, 37divcan4d 10807 . . . . 5  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( X  x.  ( 2 ^ N
) )  /  (
2 ^ N ) )  =  X )
3931, 38breqtrd 4679 . . . 4  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( |_ `  ( X  x.  (
2 ^ N ) ) )  /  (
2 ^ N ) )  <_  X )
40 1red 10055 . . . . . . 7  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
1  e.  RR )
4126, 40readdcld 10069 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( |_ `  ( X  x.  (
2 ^ N ) ) )  +  1 )  e.  RR )
4229simprd 479 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  x.  (
2 ^ N ) )  <  ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 ) )
4321, 41, 27, 42ltdiv1dd 11929 . . . . 5  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( X  x.  ( 2 ^ N
) )  /  (
2 ^ N ) )  <  ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 )  /  ( 2 ^ N ) ) )
4438, 43eqbrtrrd 4677 . . . 4  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  ->  X  <  ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 )  / 
( 2 ^ N
) ) )
4526, 20, 37redivcld 10853 . . . . 5  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( |_ `  ( X  x.  (
2 ^ N ) ) )  /  (
2 ^ N ) )  e.  RR )
4641, 20, 37redivcld 10853 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( |_
`  ( X  x.  ( 2 ^ N
) ) )  +  1 )  /  (
2 ^ N ) )  e.  RR )
4746rexrd 10089 . . . . 5  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( |_
`  ( X  x.  ( 2 ^ N
) ) )  +  1 )  /  (
2 ^ N ) )  e.  RR* )
48 elico2 12237 . . . . 5  |-  ( ( ( ( |_ `  ( X  x.  (
2 ^ N ) ) )  /  (
2 ^ N ) )  e.  RR  /\  ( ( ( |_
`  ( X  x.  ( 2 ^ N
) ) )  +  1 )  /  (
2 ^ N ) )  e.  RR* )  ->  ( X  e.  ( ( ( |_ `  ( X  x.  (
2 ^ N ) ) )  /  (
2 ^ N ) ) [,) ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 )  /  ( 2 ^ N ) ) )  <-> 
( X  e.  RR  /\  ( ( |_ `  ( X  x.  (
2 ^ N ) ) )  /  (
2 ^ N ) )  <_  X  /\  X  <  ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 )  / 
( 2 ^ N
) ) ) ) )
4945, 47, 48syl2anc 693 . . . 4  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  e.  ( ( ( |_ `  ( X  x.  (
2 ^ N ) ) )  /  (
2 ^ N ) ) [,) ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 )  /  ( 2 ^ N ) ) )  <-> 
( X  e.  RR  /\  ( ( |_ `  ( X  x.  (
2 ^ N ) ) )  /  (
2 ^ N ) )  <_  X  /\  X  <  ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 )  / 
( 2 ^ N
) ) ) ) )
505, 39, 44, 49mpbir3and 1245 . . 3  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  ->  X  e.  ( (
( |_ `  ( X  x.  ( 2 ^ N ) ) )  /  ( 2 ^ N ) ) [,) ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 )  / 
( 2 ^ N
) ) ) )
51 sxbrsiga.0 . . . . 5  |-  J  =  ( topGen `  ran  (,) )
5251, 1dya2iocival 30335 . . . 4  |-  ( ( N  e.  ZZ  /\  ( |_ `  ( X  x.  ( 2 ^ N ) ) )  e.  ZZ )  -> 
( ( |_ `  ( X  x.  (
2 ^ N ) ) ) I N )  =  ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  /  ( 2 ^ N ) ) [,) ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 )  / 
( 2 ^ N
) ) ) )
5323, 22, 52syl2anc 693 . . 3  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( |_ `  ( X  x.  (
2 ^ N ) ) ) I N )  =  ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  /  ( 2 ^ N ) ) [,) ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 )  / 
( 2 ^ N
) ) ) )
5450, 53eleqtrrd 2704 . 2  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  ->  X  e.  ( ( |_ `  ( X  x.  ( 2 ^ N
) ) ) I N ) )
55 simpr 477 . . . . . . 7  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  ->  D  e.  RR+ )
5655rpred 11872 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  ->  D  e.  RR )
575, 56resubcld 10458 . . . . 5  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  -  D
)  e.  RR )
5857rexrd 10089 . . . 4  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  -  D
)  e.  RR* )
595, 56readdcld 10069 . . . . 5  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  +  D
)  e.  RR )
6059rexrd 10089 . . . 4  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  +  D
)  e.  RR* )
6120, 37rereccld 10852 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( 1  /  (
2 ^ N ) )  e.  RR )
625, 61resubcld 10458 . . . . 5  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  -  (
1  /  ( 2 ^ N ) ) )  e.  RR )
637oveq2i 6661 . . . . . . . 8  |-  ( 2 ^ N )  =  ( 2 ^ ( |_ `  ( 1  -  ( 2 logb  D ) ) ) )
6463oveq2i 6661 . . . . . . 7  |-  ( 1  /  ( 2 ^ N ) )  =  ( 1  /  (
2 ^ ( |_
`  ( 1  -  ( 2 logb  D ) ) ) ) )
65 dya2ub 30332 . . . . . . . 8  |-  ( D  e.  RR+  ->  ( 1  /  ( 2 ^ ( |_ `  (
1  -  ( 2 logb  D ) ) ) ) )  <  D )
6665adantl 482 . . . . . . 7  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( 1  /  (
2 ^ ( |_
`  ( 1  -  ( 2 logb  D ) ) ) ) )  < 
D )
6764, 66syl5eqbr 4688 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( 1  /  (
2 ^ N ) )  <  D )
6861, 56, 5, 67ltsub2dd 10640 . . . . 5  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  -  D
)  <  ( X  -  ( 1  / 
( 2 ^ N
) ) ) )
6932, 33mulcld 10060 . . . . . . . 8  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  x.  (
2 ^ N ) )  e.  CC )
70 1cnd 10056 . . . . . . . 8  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
1  e.  CC )
7169, 70, 33, 37divsubdird 10840 . . . . . . 7  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( X  x.  ( 2 ^ N ) )  - 
1 )  /  (
2 ^ N ) )  =  ( ( ( X  x.  (
2 ^ N ) )  /  ( 2 ^ N ) )  -  ( 1  / 
( 2 ^ N
) ) ) )
7238oveq1d 6665 . . . . . . 7  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( X  x.  ( 2 ^ N ) )  / 
( 2 ^ N
) )  -  (
1  /  ( 2 ^ N ) ) )  =  ( X  -  ( 1  / 
( 2 ^ N
) ) ) )
7371, 72eqtrd 2656 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( X  x.  ( 2 ^ N ) )  - 
1 )  /  (
2 ^ N ) )  =  ( X  -  ( 1  / 
( 2 ^ N
) ) ) )
7421, 40resubcld 10458 . . . . . . 7  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( X  x.  ( 2 ^ N
) )  -  1 )  e.  RR )
7521, 41, 40, 42ltsub1dd 10639 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( X  x.  ( 2 ^ N
) )  -  1 )  <  ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 )  -  1 ) )
7626recnd 10068 . . . . . . . . . 10  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( X  x.  ( 2 ^ N ) ) )  e.  CC )
7776, 70pncand 10393 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( |_
`  ( X  x.  ( 2 ^ N
) ) )  +  1 )  -  1 )  =  ( |_
`  ( X  x.  ( 2 ^ N
) ) ) )
7875, 77breqtrd 4679 . . . . . . . 8  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( X  x.  ( 2 ^ N
) )  -  1 )  <  ( |_
`  ( X  x.  ( 2 ^ N
) ) ) )
7974, 26, 78ltled 10185 . . . . . . 7  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( X  x.  ( 2 ^ N
) )  -  1 )  <_  ( |_ `  ( X  x.  (
2 ^ N ) ) ) )
8074, 26, 27, 79lediv1dd 11930 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( X  x.  ( 2 ^ N ) )  - 
1 )  /  (
2 ^ N ) )  <_  ( ( |_ `  ( X  x.  ( 2 ^ N
) ) )  / 
( 2 ^ N
) ) )
8173, 80eqbrtrrd 4677 . . . . 5  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  -  (
1  /  ( 2 ^ N ) ) )  <_  ( ( |_ `  ( X  x.  ( 2 ^ N
) ) )  / 
( 2 ^ N
) ) )
8257, 62, 45, 68, 81ltletrd 10197 . . . 4  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  -  D
)  <  ( ( |_ `  ( X  x.  ( 2 ^ N
) ) )  / 
( 2 ^ N
) ) )
835, 61readdcld 10069 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  +  ( 1  /  ( 2 ^ N ) ) )  e.  RR )
8421, 40readdcld 10069 . . . . . . . 8  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( X  x.  ( 2 ^ N
) )  +  1 )  e.  RR )
8526, 21, 40, 30leadd1dd 10641 . . . . . . . 8  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( |_ `  ( X  x.  (
2 ^ N ) ) )  +  1 )  <_  ( ( X  x.  ( 2 ^ N ) )  +  1 ) )
8641, 84, 27, 85lediv1dd 11930 . . . . . . 7  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( |_
`  ( X  x.  ( 2 ^ N
) ) )  +  1 )  /  (
2 ^ N ) )  <_  ( (
( X  x.  (
2 ^ N ) )  +  1 )  /  ( 2 ^ N ) ) )
8769, 70, 33, 37divdird 10839 . . . . . . . 8  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( X  x.  ( 2 ^ N ) )  +  1 )  /  (
2 ^ N ) )  =  ( ( ( X  x.  (
2 ^ N ) )  /  ( 2 ^ N ) )  +  ( 1  / 
( 2 ^ N
) ) ) )
8838oveq1d 6665 . . . . . . . 8  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( X  x.  ( 2 ^ N ) )  / 
( 2 ^ N
) )  +  ( 1  /  ( 2 ^ N ) ) )  =  ( X  +  ( 1  / 
( 2 ^ N
) ) ) )
8987, 88eqtrd 2656 . . . . . . 7  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( X  x.  ( 2 ^ N ) )  +  1 )  /  (
2 ^ N ) )  =  ( X  +  ( 1  / 
( 2 ^ N
) ) ) )
9086, 89breqtrd 4679 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( |_
`  ( X  x.  ( 2 ^ N
) ) )  +  1 )  /  (
2 ^ N ) )  <_  ( X  +  ( 1  / 
( 2 ^ N
) ) ) )
9161, 56, 5, 67ltadd2dd 10196 . . . . . 6  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( X  +  ( 1  /  ( 2 ^ N ) ) )  <  ( X  +  D ) )
9246, 83, 59, 90, 91lelttrd 10195 . . . . 5  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( |_
`  ( X  x.  ( 2 ^ N
) ) )  +  1 )  /  (
2 ^ N ) )  <  ( X  +  D ) )
9346, 59, 92ltled 10185 . . . 4  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( |_
`  ( X  x.  ( 2 ^ N
) ) )  +  1 )  /  (
2 ^ N ) )  <_  ( X  +  D ) )
94 icossioo 12264 . . . 4  |-  ( ( ( ( X  -  D )  e.  RR*  /\  ( X  +  D
)  e.  RR* )  /\  ( ( X  -  D )  <  (
( |_ `  ( X  x.  ( 2 ^ N ) ) )  /  ( 2 ^ N ) )  /\  ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 )  / 
( 2 ^ N
) )  <_  ( X  +  D )
) )  ->  (
( ( |_ `  ( X  x.  (
2 ^ N ) ) )  /  (
2 ^ N ) ) [,) ( ( ( |_ `  ( X  x.  ( 2 ^ N ) ) )  +  1 )  /  ( 2 ^ N ) ) ) 
C_  ( ( X  -  D ) (,) ( X  +  D
) ) )
9558, 60, 82, 93, 94syl22anc 1327 . . 3  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( ( |_
`  ( X  x.  ( 2 ^ N
) ) )  / 
( 2 ^ N
) ) [,) (
( ( |_ `  ( X  x.  (
2 ^ N ) ) )  +  1 )  /  ( 2 ^ N ) ) )  C_  ( ( X  -  D ) (,) ( X  +  D
) ) )
9653, 95eqsstrd 3639 . 2  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  -> 
( ( |_ `  ( X  x.  (
2 ^ N ) ) ) I N )  C_  ( ( X  -  D ) (,) ( X  +  D
) ) )
97 eleq2 2690 . . . 4  |-  ( b  =  ( ( |_
`  ( X  x.  ( 2 ^ N
) ) ) I N )  ->  ( X  e.  b  <->  X  e.  ( ( |_ `  ( X  x.  (
2 ^ N ) ) ) I N ) ) )
98 sseq1 3626 . . . 4  |-  ( b  =  ( ( |_
`  ( X  x.  ( 2 ^ N
) ) ) I N )  ->  (
b  C_  ( ( X  -  D ) (,) ( X  +  D
) )  <->  ( ( |_ `  ( X  x.  ( 2 ^ N
) ) ) I N )  C_  (
( X  -  D
) (,) ( X  +  D ) ) ) )
9997, 98anbi12d 747 . . 3  |-  ( b  =  ( ( |_
`  ( X  x.  ( 2 ^ N
) ) ) I N )  ->  (
( X  e.  b  /\  b  C_  (
( X  -  D
) (,) ( X  +  D ) ) )  <->  ( X  e.  ( ( |_ `  ( X  x.  (
2 ^ N ) ) ) I N )  /\  ( ( |_ `  ( X  x.  ( 2 ^ N ) ) ) I N )  C_  ( ( X  -  D ) (,) ( X  +  D )
) ) ) )
10099rspcev 3309 . 2  |-  ( ( ( ( |_ `  ( X  x.  (
2 ^ N ) ) ) I N )  e.  ran  I  /\  ( X  e.  ( ( |_ `  ( X  x.  ( 2 ^ N ) ) ) I N )  /\  ( ( |_
`  ( X  x.  ( 2 ^ N
) ) ) I N )  C_  (
( X  -  D
) (,) ( X  +  D ) ) ) )  ->  E. b  e.  ran  I ( X  e.  b  /\  b  C_  ( ( X  -  D ) (,) ( X  +  D )
) ) )
10125, 54, 96, 100syl12anc 1324 1  |-  ( ( X  e.  RR  /\  D  e.  RR+ )  ->  E. b  e.  ran  I ( X  e.  b  /\  b  C_  ( ( X  -  D ) (,) ( X  +  D )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    C_ wss 3574   class class class wbr 4653    X. cxp 5112   ran crn 5115    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   (,)cioo 12175   [,)cico 12177   |_cfl 12591   ^cexp 12860   topGenctg 16098   logb clogb 24502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-logb 24503
This theorem is referenced by:  dya2icoseg2  30340
  Copyright terms: Public domain W3C validator