MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgaddlem2 Structured version   Visualization version   Unicode version

Theorem itgaddlem2 23590
Description: Lemma for itgadd 23591. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itgadd.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgadd.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
itgadd.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
itgadd.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
itgadd.5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
itgadd.6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
Assertion
Ref Expression
itgaddlem2  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Distinct variable groups:    x, A    x, V    ph, x
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem itgaddlem2
StepHypRef Expression
1 itgadd.5 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
2 max0sub 12027 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  B )
31, 2syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  B )
4 itgadd.6 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
5 max0sub 12027 . . . . . . . . . 10  |-  ( C  e.  RR  ->  ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  C )
64, 5syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  C ,  C ,  0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) )  =  C )
73, 6oveq12d 6668 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( if ( 0  <_  B ,  B ,  0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  +  ( if ( 0  <_  C ,  C , 
0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  =  ( B  +  C
) )
8 0re 10040 . . . . . . . . . . 11  |-  0  e.  RR
9 ifcl 4130 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  B ,  B , 
0 )  e.  RR )
101, 8, 9sylancl 694 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  RR )
1110recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  CC )
12 ifcl 4130 . . . . . . . . . . 11  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
134, 8, 12sylancl 694 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  RR )
1413recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  CC )
151renegcld 10457 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  RR )
16 ifcl 4130 . . . . . . . . . . 11  |-  ( (
-u B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
1715, 8, 16sylancl 694 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
1817recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  CC )
194renegcld 10457 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  -u C  e.  RR )
20 ifcl 4130 . . . . . . . . . . 11  |-  ( (
-u C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  RR )
2119, 8, 20sylancl 694 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  RR )
2221recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u C ,  -u C ,  0 )  e.  CC )
2311, 14, 18, 22addsub4d 10439 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) )  -  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  =  ( ( if ( 0  <_  B ,  B , 
0 )  -  if ( 0  <_  -u B ,  -u B ,  0 ) )  +  ( if ( 0  <_  C ,  C , 
0 )  -  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )
241, 4readdcld 10069 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  RR )
25 max0sub 12027 . . . . . . . . 9  |-  ( ( B  +  C )  e.  RR  ->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  -  if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 ) )  =  ( B  +  C ) )
2624, 25syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  -  if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 ) )  =  ( B  +  C ) )
277, 23, 263eqtr4rd 2667 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  -  if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 ) )  =  ( ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) )  -  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )
2824renegcld 10457 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  -u ( B  +  C )  e.  RR )
29 ifcl 4130 . . . . . . . . . 10  |-  ( (
-u ( B  +  C )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  e.  RR )
3028, 8, 29sylancl 694 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  e.  RR )
3130recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  e.  CC )
3211, 14addcld 10059 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  CC )
33 ifcl 4130 . . . . . . . . . 10  |-  ( ( ( B  +  C
)  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( B  +  C
) ,  ( B  +  C ) ,  0 )  e.  RR )
3424, 8, 33sylancl 694 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  e.  RR )
3534recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  e.  CC )
3618, 22addcld 10059 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  CC )
3731, 32, 35, 36addsubeq4d 10443 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  =  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  <->  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  -  if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 ) )  =  ( ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) )  -  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) ) )
3827, 37mpbird 247 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  =  ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) ) )
3938itgeq2dv 23548 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  _d x  =  S. A ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  _d x )
40 itgadd.1 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
41 itgadd.2 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
42 itgadd.3 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
43 itgadd.4 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L^1 )
4440, 41, 42, 43ibladd 23587 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  L^1 )
4524iblre 23560 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  ( B  +  C ) )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 ) )  e.  L^1  /\  ( x  e.  A  |->  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 ) )  e.  L^1 ) ) )
4644, 45mpbid 222 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 ) )  e.  L^1  /\  ( x  e.  A  |->  if ( 0  <_  -u ( B  +  C
) ,  -u ( B  +  C ) ,  0 ) )  e.  L^1 ) )
4746simprd 479 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u ( B  +  C
) ,  -u ( B  +  C ) ,  0 ) )  e.  L^1 )
4810, 13readdcld 10069 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR )
491iblre 23560 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L^1 
/\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 ) ) )
5041, 49mpbid 222 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e.  L^1  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 ) )
5150simpld 475 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e.  L^1 )
524iblre 23560 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e.  L^1  <->  ( (
x  e.  A  |->  if ( 0  <_  C ,  C ,  0 ) )  e.  L^1 
/\  ( x  e.  A  |->  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  L^1 ) ) )
5343, 52mpbid 222 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  if ( 0  <_  C ,  C ,  0 ) )  e.  L^1  /\  ( x  e.  A  |->  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  L^1 ) )
5453simpld 475 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  C ,  C , 
0 ) )  e.  L^1 )
5510, 51, 13, 54ibladd 23587 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )  e.  L^1 )
56 max1 12016 . . . . . . 7  |-  ( ( 0  e.  RR  /\  -u ( B  +  C
)  e.  RR )  ->  0  <_  if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 ) )
578, 28, 56sylancr 695 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u ( B  +  C
) ,  -u ( B  +  C ) ,  0 ) )
58 max1 12016 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  0  <_  if (
0  <_  B ,  B ,  0 ) )
598, 1, 58sylancr 695 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  B ,  B , 
0 ) )
60 max1 12016 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
618, 4, 60sylancr 695 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  C ,  C , 
0 ) )
6210, 13, 59, 61addge0d 10603 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
6330, 47, 48, 55, 30, 48, 57, 62itgaddlem1 23589 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  +  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  _d x  =  ( S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x ) )
6446simpld 475 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_ 
( B  +  C
) ,  ( B  +  C ) ,  0 ) )  e.  L^1 )
6517, 21readdcld 10069 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  RR )
6650simprd 479 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e.  L^1 )
6753simprd 479 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u C ,  -u C ,  0 ) )  e.  L^1 )
6817, 66, 21, 67ibladd 23587 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  e.  L^1 )
69 max1 12016 . . . . . . 7  |-  ( ( 0  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  0  <_  if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 ) )
708, 24, 69sylancr 695 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_ 
( B  +  C
) ,  ( B  +  C ) ,  0 ) )
71 max1 12016 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  -u B  e.  RR )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
728, 15, 71sylancr 695 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u B ,  -u B ,  0 ) )
73 max1 12016 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  -u C  e.  RR )  ->  0  <_  if ( 0  <_  -u C ,  -u C ,  0 ) )
748, 19, 73sylancr 695 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u C ,  -u C ,  0 ) )
7517, 21, 72, 74addge0d 10603 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )
7634, 64, 65, 68, 34, 65, 70, 75itgaddlem1 23589 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  +  ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) ) )  _d x  =  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x ) )
7739, 63, 763eqtr3d 2664 . . . 4  |-  ( ph  ->  ( S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x )  =  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x ) )
7830, 47itgcl 23550 . . . . 5  |-  ( ph  ->  S. A if ( 0  <_  -u ( B  +  C ) , 
-u ( B  +  C ) ,  0 )  _d x  e.  CC )
7910, 51, 13, 54, 10, 13, 59, 61itgaddlem1 23589 . . . . . 6  |-  ( ph  ->  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  =  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  +  S. A if ( 0  <_  C ,  C , 
0 )  _d x ) )
8010, 51itgcl 23550 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  B ,  B ,  0 )  _d x  e.  CC )
8113, 54itgcl 23550 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  C ,  C ,  0 )  _d x  e.  CC )
8280, 81addcld 10059 . . . . . 6  |-  ( ph  ->  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  +  S. A if ( 0  <_  C ,  C , 
0 )  _d x )  e.  CC )
8379, 82eqeltrd 2701 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  e.  CC )
8434, 64itgcl 23550 . . . . 5  |-  ( ph  ->  S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  e.  CC )
8517, 66, 21, 67, 17, 21, 72, 74itgaddlem1 23589 . . . . . 6  |-  ( ph  ->  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x  =  ( S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  +  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) )
8617, 66itgcl 23550 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  e.  CC )
8721, 67itgcl 23550 . . . . . . 7  |-  ( ph  ->  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x  e.  CC )
8886, 87addcld 10059 . . . . . 6  |-  ( ph  ->  ( S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  +  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x )  e.  CC )
8985, 88eqeltrd 2701 . . . . 5  |-  ( ph  ->  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x  e.  CC )
9078, 83, 84, 89addsubeq4d 10443 . . . 4  |-  ( ph  ->  ( ( S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x )  =  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  +  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x )  <-> 
( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  -  S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  _d x )  =  ( S. A ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  -  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x ) ) )
9177, 90mpbid 222 . . 3  |-  ( ph  ->  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  -  S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  _d x )  =  ( S. A ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  -  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x ) )
9279, 85oveq12d 6668 . . 3  |-  ( ph  ->  ( S. A ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) )  _d x  -  S. A ( if ( 0  <_  -u B ,  -u B ,  0 )  +  if ( 0  <_  -u C ,  -u C ,  0 ) )  _d x )  =  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  +  S. A if ( 0  <_  C ,  C ,  0 )  _d x )  -  ( S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  +  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) ) )
9380, 81, 86, 87addsub4d 10439 . . 3  |-  ( ph  ->  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  +  S. A if ( 0  <_  C ,  C , 
0 )  _d x )  -  ( S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x  +  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) )  =  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  +  ( S. A if ( 0  <_  C ,  C ,  0 )  _d x  -  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) ) )
9491, 92, 933eqtrd 2660 . 2  |-  ( ph  ->  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  -  S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C
) ,  0 )  _d x )  =  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  +  ( S. A if ( 0  <_  C ,  C ,  0 )  _d x  -  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) ) )
9524, 44itgreval 23563 . 2  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A if ( 0  <_  ( B  +  C ) ,  ( B  +  C ) ,  0 )  _d x  -  S. A if ( 0  <_  -u ( B  +  C ) ,  -u ( B  +  C ) ,  0 )  _d x ) )
961, 41itgreval 23563 . . 3  |-  ( ph  ->  S. A B  _d x  =  ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x ) )
974, 43itgreval 23563 . . 3  |-  ( ph  ->  S. A C  _d x  =  ( S. A if ( 0  <_  C ,  C ,  0 )  _d x  -  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) )
9896, 97oveq12d 6668 . 2  |-  ( ph  ->  ( S. A B  _d x  +  S. A C  _d x
)  =  ( ( S. A if ( 0  <_  B ,  B ,  0 )  _d x  -  S. A if ( 0  <_  -u B ,  -u B ,  0 )  _d x )  +  ( S. A if ( 0  <_  C ,  C ,  0 )  _d x  -  S. A if ( 0  <_  -u C ,  -u C ,  0 )  _d x ) ) )
9994, 95, 983eqtr4d 2666 1  |-  ( ph  ->  S. A ( B  +  C )  _d x  =  ( S. A B  _d x  +  S. A C  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086   class class class wbr 4653    |-> cmpt 4729  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    <_ cle 10075    - cmin 10266   -ucneg 10267   L^1cibl 23386   S.citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437
This theorem is referenced by:  itgadd  23591
  Copyright terms: Public domain W3C validator