MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2tlbnd Structured version   Visualization version   Unicode version

Theorem log2tlbnd 24672
Description: Bound the error term in the series of log2cnv 24671. (Contributed by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
log2tlbnd  |-  ( N  e.  NN0  ->  ( ( log `  2 )  -  sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )  e.  ( 0 [,] ( 3  /  ( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) ) ) ) )
Distinct variable group:    n, N

Proof of Theorem log2tlbnd
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11722 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 11389 . . . . . 6  |-  ( N  e.  NN0  ->  0  e.  ZZ )
3 oveq2 6658 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
2  x.  k )  =  ( 2  x.  n ) )
43oveq1d 6665 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  n )  +  1 ) )
54oveq2d 6666 . . . . . . . . . 10  |-  ( k  =  n  ->  (
3  x.  ( ( 2  x.  k )  +  1 ) )  =  ( 3  x.  ( ( 2  x.  n )  +  1 ) ) )
6 oveq2 6658 . . . . . . . . . 10  |-  ( k  =  n  ->  (
9 ^ k )  =  ( 9 ^ n ) )
75, 6oveq12d 6668 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 3  x.  (
( 2  x.  k
)  +  1 ) )  x.  ( 9 ^ k ) )  =  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) )
87oveq2d 6666 . . . . . . . 8  |-  ( k  =  n  ->  (
2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) ) )  =  ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) ) )
9 eqid 2622 . . . . . . . 8  |-  ( k  e.  NN0  |->  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) ) )  =  ( k  e. 
NN0  |->  ( 2  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) )
10 ovex 6678 . . . . . . . 8  |-  ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) )  e. 
_V
118, 9, 10fvmpt 6282 . . . . . . 7  |-  ( n  e.  NN0  ->  ( ( k  e.  NN0  |->  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) ) ) `
 n )  =  ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )
1211adantl 482 . . . . . 6  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( ( k  e. 
NN0  |->  ( 2  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) ) `  n )  =  ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) ) )
13 2re 11090 . . . . . . . 8  |-  2  e.  RR
14 3nn 11186 . . . . . . . . . 10  |-  3  e.  NN
15 2nn0 11309 . . . . . . . . . . . 12  |-  2  e.  NN0
16 simpr 477 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  ->  n  e.  NN0 )
17 nn0mulcl 11329 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN0  /\  n  e.  NN0 )  -> 
( 2  x.  n
)  e.  NN0 )
1815, 16, 17sylancr 695 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( 2  x.  n
)  e.  NN0 )
19 nn0p1nn 11332 . . . . . . . . . . 11  |-  ( ( 2  x.  n )  e.  NN0  ->  ( ( 2  x.  n )  +  1 )  e.  NN )
2018, 19syl 17 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( ( 2  x.  n )  +  1 )  e.  NN )
21 nnmulcl 11043 . . . . . . . . . 10  |-  ( ( 3  e.  NN  /\  ( ( 2  x.  n )  +  1 )  e.  NN )  ->  ( 3  x.  ( ( 2  x.  n )  +  1 ) )  e.  NN )
2214, 20, 21sylancr 695 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( 3  x.  (
( 2  x.  n
)  +  1 ) )  e.  NN )
23 9nn 11192 . . . . . . . . . 10  |-  9  e.  NN
24 nnexpcl 12873 . . . . . . . . . 10  |-  ( ( 9  e.  NN  /\  n  e.  NN0 )  -> 
( 9 ^ n
)  e.  NN )
2523, 16, 24sylancr 695 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( 9 ^ n
)  e.  NN )
2622, 25nnmulcld 11068 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) )  e.  NN )
27 nndivre 11056 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) )  e.  NN )  ->  ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  e.  RR )
2813, 26, 27sylancr 695 . . . . . . 7  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  RR )
2928recnd 10068 . . . . . 6  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  CC )
309log2cnv 24671 . . . . . . 7  |-  seq 0
(  +  ,  ( k  e.  NN0  |->  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) ) ) )  ~~>  ( log `  2
)
3130a1i 11 . . . . . 6  |-  ( N  e.  NN0  ->  seq 0
(  +  ,  ( k  e.  NN0  |->  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) ) ) )  ~~>  ( log `  2
) )
321, 2, 12, 29, 31isumclim 14488 . . . . 5  |-  ( N  e.  NN0  ->  sum_ n  e.  NN0  ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  =  ( log `  2 ) )
33 eqid 2622 . . . . . 6  |-  ( ZZ>= `  N )  =  (
ZZ>= `  N )
34 id 22 . . . . . 6  |-  ( N  e.  NN0  ->  N  e. 
NN0 )
35 seqex 12803 . . . . . . . 8  |-  seq 0
(  +  ,  ( k  e.  NN0  |->  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) ) ) )  e.  _V
36 fvex 6201 . . . . . . . 8  |-  ( log `  2 )  e. 
_V
3735, 36breldm 5329 . . . . . . 7  |-  (  seq 0 (  +  , 
( k  e.  NN0  |->  ( 2  /  (
( 3  x.  (
( 2  x.  k
)  +  1 ) )  x.  ( 9 ^ k ) ) ) ) )  ~~>  ( log `  2 )  ->  seq 0 (  +  , 
( k  e.  NN0  |->  ( 2  /  (
( 3  x.  (
( 2  x.  k
)  +  1 ) )  x.  ( 9 ^ k ) ) ) ) )  e. 
dom 
~~>  )
3830, 37mp1i 13 . . . . . 6  |-  ( N  e.  NN0  ->  seq 0
(  +  ,  ( k  e.  NN0  |->  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) ) ) )  e.  dom  ~~>  )
391, 33, 34, 12, 29, 38isumsplit 14572 . . . . 5  |-  ( N  e.  NN0  ->  sum_ n  e.  NN0  ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  =  (
sum_ n  e.  (
0 ... ( N  - 
1 ) ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  +  sum_ n  e.  (
ZZ>= `  N ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) ) ) )
4032, 39eqtr3d 2658 . . . 4  |-  ( N  e.  NN0  ->  ( log `  2 )  =  ( sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  +  sum_ n  e.  ( ZZ>= `  N )
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) ) )
4140oveq1d 6665 . . 3  |-  ( N  e.  NN0  ->  ( ( log `  2 )  -  sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )  =  ( ( sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  +  sum_ n  e.  ( ZZ>= `  N )
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )  -  sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) ) ) )
42 fzfid 12772 . . . . 5  |-  ( N  e.  NN0  ->  ( 0 ... ( N  - 
1 ) )  e. 
Fin )
43 elfznn0 12433 . . . . . 6  |-  ( n  e.  ( 0 ... ( N  -  1 ) )  ->  n  e.  NN0 )
4443, 29sylan2 491 . . . . 5  |-  ( ( N  e.  NN0  /\  n  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  e.  CC )
4542, 44fsumcl 14464 . . . 4  |-  ( N  e.  NN0  ->  sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  e.  CC )
46 nn0z 11400 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
47 eluznn0 11757 . . . . . . 7  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  ->  n  e.  NN0 )
4847, 11syl 17 . . . . . 6  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( k  e. 
NN0  |->  ( 2  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) ) `  n )  =  ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) ) )
4947, 28syldan 487 . . . . . 6  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  RR )
5012, 29eqeltrd 2701 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( ( k  e. 
NN0  |->  ( 2  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) ) `  n )  e.  CC )
511, 34, 50iserex 14387 . . . . . . 7  |-  ( N  e.  NN0  ->  (  seq 0 (  +  , 
( k  e.  NN0  |->  ( 2  /  (
( 3  x.  (
( 2  x.  k
)  +  1 ) )  x.  ( 9 ^ k ) ) ) ) )  e. 
dom 
~~> 
<->  seq N (  +  ,  ( k  e. 
NN0  |->  ( 2  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) ) )  e.  dom  ~~>  ) )
5238, 51mpbid 222 . . . . . 6  |-  ( N  e.  NN0  ->  seq N
(  +  ,  ( k  e.  NN0  |->  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) ) ) )  e.  dom  ~~>  )
5333, 46, 48, 49, 52isumrecl 14496 . . . . 5  |-  ( N  e.  NN0  ->  sum_ n  e.  ( ZZ>= `  N )
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  RR )
5453recnd 10068 . . . 4  |-  ( N  e.  NN0  ->  sum_ n  e.  ( ZZ>= `  N )
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  CC )
5545, 54pncan2d 10394 . . 3  |-  ( N  e.  NN0  ->  ( (
sum_ n  e.  (
0 ... ( N  - 
1 ) ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  +  sum_ n  e.  (
ZZ>= `  N ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) ) )  -  sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) ) )  = 
sum_ n  e.  ( ZZ>=
`  N ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) ) )
5641, 55eqtrd 2656 . 2  |-  ( N  e.  NN0  ->  ( ( log `  2 )  -  sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )  =  sum_ n  e.  ( ZZ>= `  N
) ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) ) )
5713a1i 11 . . . . . 6  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
2  e.  RR )
58 0le2 11111 . . . . . . 7  |-  0  <_  2
5958a1i 11 . . . . . 6  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
0  <_  2 )
6026nnred 11035 . . . . . 6  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) )  e.  RR )
6126nngt0d 11064 . . . . . 6  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
0  <  ( (
3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )
62 divge0 10892 . . . . . 6  |-  ( ( ( 2  e.  RR  /\  0  <_  2 )  /\  ( ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) )  e.  RR  /\  0  < 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) ) )  -> 
0  <_  ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) ) )
6357, 59, 60, 61, 62syl22anc 1327 . . . . 5  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
0  <_  ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) ) )
6447, 63syldan 487 . . . 4  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
0  <_  ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) ) )
6533, 46, 48, 49, 52, 64isumge0 14497 . . 3  |-  ( N  e.  NN0  ->  0  <_  sum_ n  e.  ( ZZ>= `  N ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) ) )
66 oveq2 6658 . . . . . . . . . 10  |-  ( k  =  n  ->  (
( 1  /  9
) ^ k )  =  ( ( 1  /  9 ) ^
n ) )
6766oveq2d 6666 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 2  /  (
3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  /  9 ) ^ k ) )  =  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  / 
9 ) ^ n
) ) )
68 eqid 2622 . . . . . . . . 9  |-  ( k  e.  NN0  |->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  /  9 ) ^
k ) ) )  =  ( k  e. 
NN0  |->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  / 
9 ) ^ k
) ) )
69 ovex 6678 . . . . . . . . 9  |-  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  /  9 ) ^
n ) )  e. 
_V
7067, 68, 69fvmpt 6282 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( ( k  e.  NN0  |->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  /  9 ) ^
k ) ) ) `
 n )  =  ( ( 2  / 
( 3  x.  (
( 2  x.  N
)  +  1 ) ) )  x.  (
( 1  /  9
) ^ n ) ) )
7170adantl 482 . . . . . . 7  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( ( k  e. 
NN0  |->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  / 
9 ) ^ k
) ) ) `  n )  =  ( ( 2  /  (
3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  /  9 ) ^ n ) ) )
72 9cn 11108 . . . . . . . . . . 11  |-  9  e.  CC
7372a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
9  e.  CC )
7423nnne0i 11055 . . . . . . . . . . 11  |-  9  =/=  0
7574a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
9  =/=  0 )
76 nn0z 11400 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  n  e.  ZZ )
7776adantl 482 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  ->  n  e.  ZZ )
7873, 75, 77exprecd 13016 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( ( 1  / 
9 ) ^ n
)  =  ( 1  /  ( 9 ^ n ) ) )
7978oveq2d 6666 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( ( 2  / 
( 3  x.  (
( 2  x.  N
)  +  1 ) ) )  x.  (
( 1  /  9
) ^ n ) )  =  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( 1  / 
( 9 ^ n
) ) ) )
80 nn0mulcl 11329 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2  x.  N
)  e.  NN0 )
8115, 80mpan 706 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( 2  x.  N )  e. 
NN0 )
82 nn0p1nn 11332 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  N )  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  e.  NN )
8381, 82syl 17 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  e.  NN )
84 nnmulcl 11043 . . . . . . . . . . . . 13  |-  ( ( 3  e.  NN  /\  ( ( 2  x.  N )  +  1 )  e.  NN )  ->  ( 3  x.  ( ( 2  x.  N )  +  1 ) )  e.  NN )
8514, 83, 84sylancr 695 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( 3  x.  ( ( 2  x.  N )  +  1 ) )  e.  NN )
86 nndivre 11056 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( 3  x.  (
( 2  x.  N
)  +  1 ) )  e.  NN )  ->  ( 2  / 
( 3  x.  (
( 2  x.  N
)  +  1 ) ) )  e.  RR )
8713, 85, 86sylancr 695 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  e.  RR )
8887recnd 10068 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  e.  CC )
8988adantr 481 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( 2  /  (
3  x.  ( ( 2  x.  N )  +  1 ) ) )  e.  CC )
9025nncnd 11036 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( 9 ^ n
)  e.  CC )
9125nnne0d 11065 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( 9 ^ n
)  =/=  0 )
9289, 90, 91divrecd 10804 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( ( 2  / 
( 3  x.  (
( 2  x.  N
)  +  1 ) ) )  /  (
9 ^ n ) )  =  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( 1  / 
( 9 ^ n
) ) ) )
93 2cnd 11093 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
2  e.  CC )
9485adantr 481 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( 3  x.  (
( 2  x.  N
)  +  1 ) )  e.  NN )
9594nncnd 11036 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( 3  x.  (
( 2  x.  N
)  +  1 ) )  e.  CC )
9694nnne0d 11065 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( 3  x.  (
( 2  x.  N
)  +  1 ) )  =/=  0 )
9793, 95, 90, 96, 91divdiv1d 10832 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( ( 2  / 
( 3  x.  (
( 2  x.  N
)  +  1 ) ) )  /  (
9 ^ n ) )  =  ( 2  /  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ n
) ) ) )
9879, 92, 973eqtr2d 2662 . . . . . . 7  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( ( 2  / 
( 3  x.  (
( 2  x.  N
)  +  1 ) ) )  x.  (
( 1  /  9
) ^ n ) )  =  ( 2  /  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ n
) ) ) )
9971, 98eqtrd 2656 . . . . . 6  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( ( k  e. 
NN0  |->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  / 
9 ) ^ k
) ) ) `  n )  =  ( 2  /  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ n ) ) ) )
10047, 99syldan 487 . . . . 5  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( k  e. 
NN0  |->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  / 
9 ) ^ k
) ) ) `  n )  =  ( 2  /  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ n ) ) ) )
10194, 25nnmulcld 11068 . . . . . . 7  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ n ) )  e.  NN )
102 nndivre 11056 . . . . . . 7  |-  ( ( 2  e.  RR  /\  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ n ) )  e.  NN )  ->  ( 2  / 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ n ) ) )  e.  RR )
10313, 101, 102sylancr 695 . . . . . 6  |-  ( ( N  e.  NN0  /\  n  e.  NN0 )  -> 
( 2  /  (
( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  RR )
10447, 103syldan 487 . . . . 5  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 2  /  (
( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  RR )
10581adantr 481 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 2  x.  N
)  e.  NN0 )
106105nn0red 11352 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 2  x.  N
)  e.  RR )
10715, 47, 17sylancr 695 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 2  x.  n
)  e.  NN0 )
108107nn0red 11352 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 2  x.  n
)  e.  RR )
109 1red 10055 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
1  e.  RR )
110 eluzle 11700 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  N
)  ->  N  <_  n )
111110adantl 482 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  ->  N  <_  n )
112 nn0re 11301 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  RR )
113112adantr 481 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  ->  N  e.  RR )
11447nn0red 11352 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  ->  n  e.  RR )
11513a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
2  e.  RR )
116 2pos 11112 . . . . . . . . . . . 12  |-  0  <  2
117116a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
0  <  2 )
118 lemul2 10876 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  n  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( N  <_  n 
<->  ( 2  x.  N
)  <_  ( 2  x.  n ) ) )
119113, 114, 115, 117, 118syl112anc 1330 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( N  <_  n  <->  ( 2  x.  N )  <_  ( 2  x.  n ) ) )
120111, 119mpbid 222 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 2  x.  N
)  <_  ( 2  x.  n ) )
121106, 108, 109, 120leadd1dd 10641 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( 2  x.  N )  +  1 )  <_  ( (
2  x.  n )  +  1 ) )
12283adantr 481 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( 2  x.  N )  +  1 )  e.  NN )
123122nnred 11035 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( 2  x.  N )  +  1 )  e.  RR )
12447, 20syldan 487 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( 2  x.  n )  +  1 )  e.  NN )
125124nnred 11035 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( 2  x.  n )  +  1 )  e.  RR )
126 3re 11094 . . . . . . . . . 10  |-  3  e.  RR
127126a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
3  e.  RR )
128 3pos 11114 . . . . . . . . . 10  |-  0  <  3
129128a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
0  <  3 )
130 lemul2 10876 . . . . . . . . 9  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  RR  /\  ( ( 2  x.  n )  +  1 )  e.  RR  /\  ( 3  e.  RR  /\  0  <  3 ) )  ->  ( (
( 2  x.  N
)  +  1 )  <_  ( ( 2  x.  n )  +  1 )  <->  ( 3  x.  ( ( 2  x.  N )  +  1 ) )  <_ 
( 3  x.  (
( 2  x.  n
)  +  1 ) ) ) )
131123, 125, 127, 129, 130syl112anc 1330 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( ( 2  x.  N )  +  1 )  <_  (
( 2  x.  n
)  +  1 )  <-> 
( 3  x.  (
( 2  x.  N
)  +  1 ) )  <_  ( 3  x.  ( ( 2  x.  n )  +  1 ) ) ) )
132121, 131mpbid 222 . . . . . . 7  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 3  x.  (
( 2  x.  N
)  +  1 ) )  <_  ( 3  x.  ( ( 2  x.  n )  +  1 ) ) )
13385adantr 481 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 3  x.  (
( 2  x.  N
)  +  1 ) )  e.  NN )
134133nnred 11035 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 3  x.  (
( 2  x.  N
)  +  1 ) )  e.  RR )
13547, 22syldan 487 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 3  x.  (
( 2  x.  n
)  +  1 ) )  e.  NN )
136135nnred 11035 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 3  x.  (
( 2  x.  n
)  +  1 ) )  e.  RR )
13723, 47, 24sylancr 695 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 9 ^ n
)  e.  NN )
138137nnred 11035 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 9 ^ n
)  e.  RR )
139137nngt0d 11064 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
0  <  ( 9 ^ n ) )
140 lemul1 10875 . . . . . . . 8  |-  ( ( ( 3  x.  (
( 2  x.  N
)  +  1 ) )  e.  RR  /\  ( 3  x.  (
( 2  x.  n
)  +  1 ) )  e.  RR  /\  ( ( 9 ^ n )  e.  RR  /\  0  <  ( 9 ^ n ) ) )  ->  ( (
3  x.  ( ( 2  x.  N )  +  1 ) )  <_  ( 3  x.  ( ( 2  x.  n )  +  1 ) )  <->  ( (
3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ n ) )  <_ 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) ) )
141134, 136, 138, 139, 140syl112anc 1330 . . . . . . 7  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  <_  (
3  x.  ( ( 2  x.  n )  +  1 ) )  <-> 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ n ) )  <_  ( (
3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) ) )
142132, 141mpbid 222 . . . . . 6  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ n ) )  <_  ( (
3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )
14347, 101syldan 487 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ n ) )  e.  NN )
144143nnred 11035 . . . . . . 7  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ n ) )  e.  RR )
145143nngt0d 11064 . . . . . . 7  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
0  <  ( (
3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ n ) ) )
14647, 60syldan 487 . . . . . . 7  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) )  e.  RR )
14747, 61syldan 487 . . . . . . 7  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
0  <  ( (
3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )
148 lediv2 10913 . . . . . . 7  |-  ( ( ( ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ n
) )  e.  RR  /\  0  <  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ n ) ) )  /\  ( ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) )  e.  RR  /\  0  < 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ n ) )  <_ 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) )  <->  ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  <_  (
2  /  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ n ) ) ) ) )
149144, 145, 146, 147, 115, 117, 148syl222anc 1342 . . . . . 6  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ n
) )  <_  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) )  <-> 
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  <_  ( 2  /  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ n
) ) ) ) )
150142, 149mpbid 222 . . . . 5  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  <_  ( 2  /  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ n
) ) ) )
151 9re 11107 . . . . . . . . . . . 12  |-  9  e.  RR
152151, 74rereccli 10790 . . . . . . . . . . 11  |-  ( 1  /  9 )  e.  RR
153152recni 10052 . . . . . . . . . 10  |-  ( 1  /  9 )  e.  CC
154153a1i 11 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 1  /  9 )  e.  CC )
155 0re 10040 . . . . . . . . . . . . 13  |-  0  e.  RR
156 9pos 11122 . . . . . . . . . . . . . 14  |-  0  <  9
157151, 156recgt0ii 10929 . . . . . . . . . . . . 13  |-  0  <  ( 1  /  9
)
158155, 152, 157ltleii 10160 . . . . . . . . . . . 12  |-  0  <_  ( 1  /  9
)
159 absid 14036 . . . . . . . . . . . 12  |-  ( ( ( 1  /  9
)  e.  RR  /\  0  <_  ( 1  / 
9 ) )  -> 
( abs `  (
1  /  9 ) )  =  ( 1  /  9 ) )
160152, 158, 159mp2an 708 . . . . . . . . . . 11  |-  ( abs `  ( 1  /  9
) )  =  ( 1  /  9 )
161 1lt9 11229 . . . . . . . . . . . . 13  |-  1  <  9
162 recgt1i 10920 . . . . . . . . . . . . 13  |-  ( ( 9  e.  RR  /\  1  <  9 )  -> 
( 0  <  (
1  /  9 )  /\  ( 1  / 
9 )  <  1
) )
163151, 161, 162mp2an 708 . . . . . . . . . . . 12  |-  ( 0  <  ( 1  / 
9 )  /\  (
1  /  9 )  <  1 )
164163simpri 478 . . . . . . . . . . 11  |-  ( 1  /  9 )  <  1
165160, 164eqbrtri 4674 . . . . . . . . . 10  |-  ( abs `  ( 1  /  9
) )  <  1
166165a1i 11 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( abs `  ( 1  /  9
) )  <  1
)
167 eqid 2622 . . . . . . . . . . 11  |-  ( k  e.  NN0  |->  ( ( 1  /  9 ) ^ k ) )  =  ( k  e. 
NN0  |->  ( ( 1  /  9 ) ^
k ) )
168 ovex 6678 . . . . . . . . . . 11  |-  ( ( 1  /  9 ) ^ n )  e. 
_V
16966, 167, 168fvmpt 6282 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( ( k  e.  NN0  |->  ( ( 1  /  9 ) ^ k ) ) `
 n )  =  ( ( 1  / 
9 ) ^ n
) )
17047, 169syl 17 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( k  e. 
NN0  |->  ( ( 1  /  9 ) ^
k ) ) `  n )  =  ( ( 1  /  9
) ^ n ) )
171154, 166, 34, 170geolim2 14602 . . . . . . . 8  |-  ( N  e.  NN0  ->  seq N
(  +  ,  ( k  e.  NN0  |->  ( ( 1  /  9 ) ^ k ) ) )  ~~>  ( ( ( 1  /  9 ) ^ N )  / 
( 1  -  (
1  /  9 ) ) ) )
17272a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  9  e.  CC )
17374a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  9  =/=  0 )
174172, 173, 46exprecd 13016 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ( 1  /  9 ) ^ N )  =  ( 1  /  (
9 ^ N ) ) )
17572, 74dividi 10758 . . . . . . . . . . . . 13  |-  ( 9  /  9 )  =  1
176175oveq1i 6660 . . . . . . . . . . . 12  |-  ( ( 9  /  9 )  -  ( 1  / 
9 ) )  =  ( 1  -  (
1  /  9 ) )
177 ax-1cn 9994 . . . . . . . . . . . . . 14  |-  1  e.  CC
17872, 74pm3.2i 471 . . . . . . . . . . . . . 14  |-  ( 9  e.  CC  /\  9  =/=  0 )
179 divsubdir 10721 . . . . . . . . . . . . . 14  |-  ( ( 9  e.  CC  /\  1  e.  CC  /\  (
9  e.  CC  /\  9  =/=  0 ) )  ->  ( ( 9  -  1 )  / 
9 )  =  ( ( 9  /  9
)  -  ( 1  /  9 ) ) )
18072, 177, 178, 179mp3an 1424 . . . . . . . . . . . . 13  |-  ( ( 9  -  1 )  /  9 )  =  ( ( 9  / 
9 )  -  (
1  /  9 ) )
181 df-9 11086 . . . . . . . . . . . . . . . 16  |-  9  =  ( 8  +  1 )
182181oveq1i 6660 . . . . . . . . . . . . . . 15  |-  ( 9  -  1 )  =  ( ( 8  +  1 )  -  1 )
183 8cn 11106 . . . . . . . . . . . . . . . 16  |-  8  e.  CC
184183, 177pncan3oi 10297 . . . . . . . . . . . . . . 15  |-  ( ( 8  +  1 )  -  1 )  =  8
185182, 184eqtri 2644 . . . . . . . . . . . . . 14  |-  ( 9  -  1 )  =  8
186185oveq1i 6660 . . . . . . . . . . . . 13  |-  ( ( 9  -  1 )  /  9 )  =  ( 8  /  9
)
187180, 186eqtr3i 2646 . . . . . . . . . . . 12  |-  ( ( 9  /  9 )  -  ( 1  / 
9 ) )  =  ( 8  /  9
)
188176, 187eqtr3i 2646 . . . . . . . . . . 11  |-  ( 1  -  ( 1  / 
9 ) )  =  ( 8  /  9
)
189188a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 1  -  ( 1  / 
9 ) )  =  ( 8  /  9
) )
190174, 189oveq12d 6668 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( ( 1  /  9
) ^ N )  /  ( 1  -  ( 1  /  9
) ) )  =  ( ( 1  / 
( 9 ^ N
) )  /  (
8  /  9 ) ) )
191177a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  1  e.  CC )
192 nnexpcl 12873 . . . . . . . . . . . 12  |-  ( ( 9  e.  NN  /\  N  e.  NN0 )  -> 
( 9 ^ N
)  e.  NN )
19323, 192mpan 706 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( 9 ^ N )  e.  NN )
194193nncnd 11036 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 9 ^ N )  e.  CC )
195183, 72, 74divcli 10767 . . . . . . . . . . 11  |-  ( 8  /  9 )  e.  CC
196195a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 8  /  9 )  e.  CC )
197193nnne0d 11065 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 9 ^ N )  =/=  0 )
198 8nn 11191 . . . . . . . . . . . . 13  |-  8  e.  NN
199198nnne0i 11055 . . . . . . . . . . . 12  |-  8  =/=  0
200183, 72, 199, 74divne0i 10773 . . . . . . . . . . 11  |-  ( 8  /  9 )  =/=  0
201200a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 8  /  9 )  =/=  0 )
202191, 194, 196, 197, 201divdiv32d 10826 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( 1  /  ( 9 ^ N ) )  /  ( 8  / 
9 ) )  =  ( ( 1  / 
( 8  /  9
) )  /  (
9 ^ N ) ) )
203 recdiv 10731 . . . . . . . . . . . 12  |-  ( ( ( 8  e.  CC  /\  8  =/=  0 )  /\  ( 9  e.  CC  /\  9  =/=  0 ) )  -> 
( 1  /  (
8  /  9 ) )  =  ( 9  /  8 ) )
204183, 199, 72, 74, 203mp4an 709 . . . . . . . . . . 11  |-  ( 1  /  ( 8  / 
9 ) )  =  ( 9  /  8
)
205204oveq1i 6660 . . . . . . . . . 10  |-  ( ( 1  /  ( 8  /  9 ) )  /  ( 9 ^ N ) )  =  ( ( 9  / 
8 )  /  (
9 ^ N ) )
206183a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  8  e.  CC )
207199a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  8  =/=  0 )
208172, 206, 194, 207, 197divdiv1d 10832 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ( 9  /  8 )  /  ( 9 ^ N ) )  =  ( 9  /  (
8  x.  ( 9 ^ N ) ) ) )
209205, 208syl5eq 2668 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( 1  /  ( 8  /  9 ) )  /  ( 9 ^ N ) )  =  ( 9  /  (
8  x.  ( 9 ^ N ) ) ) )
210190, 202, 2093eqtrd 2660 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( ( 1  /  9
) ^ N )  /  ( 1  -  ( 1  /  9
) ) )  =  ( 9  /  (
8  x.  ( 9 ^ N ) ) ) )
211171, 210breqtrd 4679 . . . . . . 7  |-  ( N  e.  NN0  ->  seq N
(  +  ,  ( k  e.  NN0  |->  ( ( 1  /  9 ) ^ k ) ) )  ~~>  ( 9  / 
( 8  x.  (
9 ^ N ) ) ) )
212 expcl 12878 . . . . . . . . 9  |-  ( ( ( 1  /  9
)  e.  CC  /\  n  e.  NN0 )  -> 
( ( 1  / 
9 ) ^ n
)  e.  CC )
213153, 47, 212sylancr 695 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( 1  / 
9 ) ^ n
)  e.  CC )
214170, 213eqeltrd 2701 . . . . . . 7  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( k  e. 
NN0  |->  ( ( 1  /  9 ) ^
k ) ) `  n )  e.  CC )
21547, 70syl 17 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( k  e. 
NN0  |->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  / 
9 ) ^ k
) ) ) `  n )  =  ( ( 2  /  (
3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  /  9 ) ^ n ) ) )
216170oveq2d 6666 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( 2  / 
( 3  x.  (
( 2  x.  N
)  +  1 ) ) )  x.  (
( k  e.  NN0  |->  ( ( 1  / 
9 ) ^ k
) ) `  n
) )  =  ( ( 2  /  (
3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  /  9 ) ^ n ) ) )
217215, 216eqtr4d 2659 . . . . . . 7  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( ( k  e. 
NN0  |->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  / 
9 ) ^ k
) ) ) `  n )  =  ( ( 2  /  (
3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( k  e.  NN0  |->  ( ( 1  /  9 ) ^ k ) ) `
 n ) ) )
21833, 46, 88, 211, 214, 217isermulc2 14388 . . . . . 6  |-  ( N  e.  NN0  ->  seq N
(  +  ,  ( k  e.  NN0  |->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  /  9 ) ^
k ) ) ) )  ~~>  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( 9  /  (
8  x.  ( 9 ^ N ) ) ) ) )
219 seqex 12803 . . . . . . 7  |-  seq N
(  +  ,  ( k  e.  NN0  |->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  /  9 ) ^
k ) ) ) )  e.  _V
220 ovex 6678 . . . . . . 7  |-  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( 9  / 
( 8  x.  (
9 ^ N ) ) ) )  e. 
_V
221219, 220breldm 5329 . . . . . 6  |-  (  seq N (  +  , 
( k  e.  NN0  |->  ( ( 2  / 
( 3  x.  (
( 2  x.  N
)  +  1 ) ) )  x.  (
( 1  /  9
) ^ k ) ) ) )  ~~>  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( 9  / 
( 8  x.  (
9 ^ N ) ) ) )  ->  seq N (  +  , 
( k  e.  NN0  |->  ( ( 2  / 
( 3  x.  (
( 2  x.  N
)  +  1 ) ) )  x.  (
( 1  /  9
) ^ k ) ) ) )  e. 
dom 
~~>  )
222218, 221syl 17 . . . . 5  |-  ( N  e.  NN0  ->  seq N
(  +  ,  ( k  e.  NN0  |->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  /  9 ) ^
k ) ) ) )  e.  dom  ~~>  )
22333, 46, 48, 49, 100, 104, 150, 52, 222isumle 14576 . . . 4  |-  ( N  e.  NN0  ->  sum_ n  e.  ( ZZ>= `  N )
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  <_  sum_ n  e.  ( ZZ>= `  N )
( 2  /  (
( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )
224104recnd 10068 . . . . 5  |-  ( ( N  e.  NN0  /\  n  e.  ( ZZ>= `  N ) )  -> 
( 2  /  (
( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  CC )
225 3cn 11095 . . . . . . . . . . . 12  |-  3  e.  CC
226 4cn 11098 . . . . . . . . . . . 12  |-  4  e.  CC
227 2cn 11091 . . . . . . . . . . . 12  |-  2  e.  CC
228 4ne0 11117 . . . . . . . . . . . 12  |-  4  =/=  0
229 3ne0 11115 . . . . . . . . . . . 12  |-  3  =/=  0
230 2ne0 11113 . . . . . . . . . . . 12  |-  2  =/=  0
231225, 226, 227, 225, 228, 229, 230divdivdivi 10788 . . . . . . . . . . 11  |-  ( ( 3  /  4 )  /  ( 2  / 
3 ) )  =  ( ( 3  x.  3 )  /  (
4  x.  2 ) )
232 3t3e9 11180 . . . . . . . . . . . 12  |-  ( 3  x.  3 )  =  9
233 4t2e8 11181 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
234232, 233oveq12i 6662 . . . . . . . . . . 11  |-  ( ( 3  x.  3 )  /  ( 4  x.  2 ) )  =  ( 9  /  8
)
235231, 234eqtri 2644 . . . . . . . . . 10  |-  ( ( 3  /  4 )  /  ( 2  / 
3 ) )  =  ( 9  /  8
)
236235oveq2i 6661 . . . . . . . . 9  |-  ( ( 2  /  3 )  x.  ( ( 3  /  4 )  / 
( 2  /  3
) ) )  =  ( ( 2  / 
3 )  x.  (
9  /  8 ) )
237225, 226, 228divcli 10767 . . . . . . . . . 10  |-  ( 3  /  4 )  e.  CC
238227, 225, 229divcli 10767 . . . . . . . . . 10  |-  ( 2  /  3 )  e.  CC
239227, 225, 230, 229divne0i 10773 . . . . . . . . . 10  |-  ( 2  /  3 )  =/=  0
240237, 238, 239divcan2i 10768 . . . . . . . . 9  |-  ( ( 2  /  3 )  x.  ( ( 3  /  4 )  / 
( 2  /  3
) ) )  =  ( 3  /  4
)
241236, 240eqtr3i 2646 . . . . . . . 8  |-  ( ( 2  /  3 )  x.  ( 9  / 
8 ) )  =  ( 3  /  4
)
242241oveq1i 6660 . . . . . . 7  |-  ( ( ( 2  /  3
)  x.  ( 9  /  8 ) )  /  ( ( ( 2  x.  N )  +  1 )  x.  ( 9 ^ N
) ) )  =  ( ( 3  / 
4 )  /  (
( ( 2  x.  N )  +  1 )  x.  ( 9 ^ N ) ) )
243 2cnd 11093 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  2  e.  CC )
244225a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  3  e.  CC )
24583nncnd 11036 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  e.  CC )
246229a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  3  =/=  0 )
24783nnne0d 11065 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  =/=  0 )
248243, 244, 245, 246, 247divdiv1d 10832 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( 2  /  3 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( 2  /  (
3  x.  ( ( 2  x.  N )  +  1 ) ) ) )
249248, 208oveq12d 6668 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( ( 2  /  3
)  /  ( ( 2  x.  N )  +  1 ) )  x.  ( ( 9  /  8 )  / 
( 9 ^ N
) ) )  =  ( ( 2  / 
( 3  x.  (
( 2  x.  N
)  +  1 ) ) )  x.  (
9  /  ( 8  x.  ( 9 ^ N ) ) ) ) )
250238a1i 11 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 2  /  3 )  e.  CC )
25172, 183, 199divcli 10767 . . . . . . . . . 10  |-  ( 9  /  8 )  e.  CC
252251a1i 11 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 9  /  8 )  e.  CC )
253250, 245, 252, 194, 247, 197divmuldivd 10842 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( ( 2  /  3
)  /  ( ( 2  x.  N )  +  1 ) )  x.  ( ( 9  /  8 )  / 
( 9 ^ N
) ) )  =  ( ( ( 2  /  3 )  x.  ( 9  /  8
) )  /  (
( ( 2  x.  N )  +  1 )  x.  ( 9 ^ N ) ) ) )
254249, 253eqtr3d 2658 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( 9  / 
( 8  x.  (
9 ^ N ) ) ) )  =  ( ( ( 2  /  3 )  x.  ( 9  /  8
) )  /  (
( ( 2  x.  N )  +  1 )  x.  ( 9 ^ N ) ) ) )
255226a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  4  e.  CC )
256255, 245, 194mulassd 10063 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N ) )  =  ( 4  x.  (
( ( 2  x.  N )  +  1 )  x.  ( 9 ^ N ) ) ) )
257256oveq2d 6666 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( 3  /  ( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) ) )  =  ( 3  /  (
4  x.  ( ( ( 2  x.  N
)  +  1 )  x.  ( 9 ^ N ) ) ) ) )
25883, 193nnmulcld 11068 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  x.  ( 9 ^ N ) )  e.  NN )
259258nncnd 11036 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  x.  ( 9 ^ N ) )  e.  CC )
260228a1i 11 . . . . . . . . 9  |-  ( N  e.  NN0  ->  4  =/=  0 )
261258nnne0d 11065 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( ( 2  x.  N
)  +  1 )  x.  ( 9 ^ N ) )  =/=  0 )
262244, 255, 259, 260, 261divdiv1d 10832 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( 3  /  4 )  /  ( ( ( 2  x.  N )  +  1 )  x.  ( 9 ^ N
) ) )  =  ( 3  /  (
4  x.  ( ( ( 2  x.  N
)  +  1 )  x.  ( 9 ^ N ) ) ) ) )
263257, 262eqtr4d 2659 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 3  /  ( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) ) )  =  ( ( 3  / 
4 )  /  (
( ( 2  x.  N )  +  1 )  x.  ( 9 ^ N ) ) ) )
264242, 254, 2633eqtr4a 2682 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( 9  / 
( 8  x.  (
9 ^ N ) ) ) )  =  ( 3  /  (
( 4  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ N ) ) ) )
265218, 264breqtrd 4679 . . . . 5  |-  ( N  e.  NN0  ->  seq N
(  +  ,  ( k  e.  NN0  |->  ( ( 2  /  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )  x.  ( ( 1  /  9 ) ^
k ) ) ) )  ~~>  ( 3  / 
( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) ) ) )
26633, 46, 100, 224, 265isumclim 14488 . . . 4  |-  ( N  e.  NN0  ->  sum_ n  e.  ( ZZ>= `  N )
( 2  /  (
( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ n ) ) )  =  ( 3  /  ( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) ) ) )
267223, 266breqtrd 4679 . . 3  |-  ( N  e.  NN0  ->  sum_ n  e.  ( ZZ>= `  N )
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  <_  ( 3  /  ( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) ) ) )
268 4nn 11187 . . . . . . 7  |-  4  e.  NN
269 nnmulcl 11043 . . . . . . 7  |-  ( ( 4  e.  NN  /\  ( ( 2  x.  N )  +  1 )  e.  NN )  ->  ( 4  x.  ( ( 2  x.  N )  +  1 ) )  e.  NN )
270268, 83, 269sylancr 695 . . . . . 6  |-  ( N  e.  NN0  ->  ( 4  x.  ( ( 2  x.  N )  +  1 ) )  e.  NN )
271270, 193nnmulcld 11068 . . . . 5  |-  ( N  e.  NN0  ->  ( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N ) )  e.  NN )
272 nndivre 11056 . . . . 5  |-  ( ( 3  e.  RR  /\  ( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) )  e.  NN )  ->  ( 3  / 
( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) ) )  e.  RR )
273126, 271, 272sylancr 695 . . . 4  |-  ( N  e.  NN0  ->  ( 3  /  ( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) ) )  e.  RR )
274 elicc2 12238 . . . 4  |-  ( ( 0  e.  RR  /\  ( 3  /  (
( 4  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ N ) ) )  e.  RR )  ->  ( sum_ n  e.  ( ZZ>= `  N )
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  ( 0 [,] ( 3  / 
( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) ) ) )  <->  ( sum_ n  e.  ( ZZ>= `  N
) ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  e.  RR  /\  0  <_  sum_ n  e.  ( ZZ>= `  N )
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  /\  sum_ n  e.  ( ZZ>= `  N )
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  <_  ( 3  /  ( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) ) ) ) ) )
275155, 273, 274sylancr 695 . . 3  |-  ( N  e.  NN0  ->  ( sum_ n  e.  ( ZZ>= `  N
) ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  e.  ( 0 [,] ( 3  /  ( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) ) ) )  <-> 
( sum_ n  e.  (
ZZ>= `  N ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  RR  /\  0  <_ 
sum_ n  e.  ( ZZ>=
`  N ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  /\  sum_ n  e.  (
ZZ>= `  N ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  <_  ( 3  / 
( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) ) ) ) ) )
27653, 65, 267, 275mpbir3and 1245 . 2  |-  ( N  e.  NN0  ->  sum_ n  e.  ( ZZ>= `  N )
( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  ( 0 [,] ( 3  / 
( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) ) ) ) )
27756, 276eqeltrd 2701 1  |-  ( N  e.  NN0  ->  ( ( log `  2 )  -  sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )  e.  ( 0 [,] ( 3  /  ( ( 4  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   8c8 11076   9c9 11077   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   [,]cicc 12178   ...cfz 12326    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215   sum_csu 14416   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-ulm 24131  df-log 24303  df-atan 24594
This theorem is referenced by:  log2ub  24676
  Copyright terms: Public domain W3C validator