Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifhom Structured version   Visualization version   Unicode version

Theorem xrge0iifhom 29983
Description: The defined function from the closed unit interval and the extended nonnegative reals is also a monoid homomorphism. (Contributed by Thierry Arnoux, 5-Apr-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  =  0 , +oo ,  -u ( log `  x
) ) )
xrge0iifhmeo.k  |-  J  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
Assertion
Ref Expression
xrge0iifhom  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  e.  ( 0 [,] 1 ) )  ->  ( F `  ( X  x.  Y
) )  =  ( ( F `  X
) +e ( F `  Y ) ) )
Distinct variable groups:    x, X    x, F    x, Y
Allowed substitution hint:    J( x)

Proof of Theorem xrge0iifhom
StepHypRef Expression
1 0xr 10086 . . . . . 6  |-  0  e.  RR*
2 1re 10039 . . . . . . 7  |-  1  e.  RR
32rexri 10097 . . . . . 6  |-  1  e.  RR*
4 0le1 10551 . . . . . 6  |-  0  <_  1
5 snunioc 12300 . . . . . 6  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  0  <_ 
1 )  ->  ( { 0 }  u.  ( 0 (,] 1
) )  =  ( 0 [,] 1 ) )
61, 3, 4, 5mp3an 1424 . . . . 5  |-  ( { 0 }  u.  (
0 (,] 1 ) )  =  ( 0 [,] 1 )
76eleq2i 2693 . . . 4  |-  ( Y  e.  ( { 0 }  u.  ( 0 (,] 1 ) )  <-> 
Y  e.  ( 0 [,] 1 ) )
8 elun 3753 . . . 4  |-  ( Y  e.  ( { 0 }  u.  ( 0 (,] 1 ) )  <-> 
( Y  e.  {
0 }  \/  Y  e.  ( 0 (,] 1
) ) )
97, 8bitr3i 266 . . 3  |-  ( Y  e.  ( 0 [,] 1 )  <->  ( Y  e.  { 0 }  \/  Y  e.  ( 0 (,] 1 ) ) )
10 elsni 4194 . . . 4  |-  ( Y  e.  { 0 }  ->  Y  =  0 )
1110orim1i 539 . . 3  |-  ( ( Y  e.  { 0 }  \/  Y  e.  ( 0 (,] 1
) )  ->  ( Y  =  0  \/  Y  e.  ( 0 (,] 1 ) ) )
129, 11sylbi 207 . 2  |-  ( Y  e.  ( 0 [,] 1 )  ->  ( Y  =  0  \/  Y  e.  ( 0 (,] 1 ) ) )
13 0elunit 12290 . . . . . . . 8  |-  0  e.  ( 0 [,] 1
)
14 iftrue 4092 . . . . . . . . 9  |-  ( x  =  0  ->  if ( x  =  0 , +oo ,  -u ( log `  x ) )  = +oo )
15 xrge0iifhmeo.1 . . . . . . . . 9  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  =  0 , +oo ,  -u ( log `  x
) ) )
16 pnfex 10093 . . . . . . . . 9  |- +oo  e.  _V
1714, 15, 16fvmpt 6282 . . . . . . . 8  |-  ( 0  e.  ( 0 [,] 1 )  ->  ( F `  0 )  = +oo )
1813, 17ax-mp 5 . . . . . . 7  |-  ( F `
 0 )  = +oo
1918oveq2i 6661 . . . . . 6  |-  ( ( F `  X ) +e ( F `
 0 ) )  =  ( ( F `
 X ) +e +oo )
20 eqeq1 2626 . . . . . . . . . . 11  |-  ( x  =  X  ->  (
x  =  0  <->  X  =  0 ) )
21 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  X  ->  ( log `  x )  =  ( log `  X
) )
2221negeqd 10275 . . . . . . . . . . 11  |-  ( x  =  X  ->  -u ( log `  x )  = 
-u ( log `  X
) )
2320, 22ifbieq2d 4111 . . . . . . . . . 10  |-  ( x  =  X  ->  if ( x  =  0 , +oo ,  -u ( log `  x ) )  =  if ( X  =  0 , +oo ,  -u ( log `  X
) ) )
24 negex 10279 . . . . . . . . . . 11  |-  -u ( log `  X )  e. 
_V
2516, 24ifex 4156 . . . . . . . . . 10  |-  if ( X  =  0 , +oo ,  -u ( log `  X ) )  e.  _V
2623, 15, 25fvmpt 6282 . . . . . . . . 9  |-  ( X  e.  ( 0 [,] 1 )  ->  ( F `  X )  =  if ( X  =  0 , +oo ,  -u ( log `  X
) ) )
27 pnfxr 10092 . . . . . . . . . . 11  |- +oo  e.  RR*
2827a1i 11 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 [,] 1 )  /\  X  =  0 )  -> +oo  e.  RR* )
29 elunitrn 29943 . . . . . . . . . . . . . . 15  |-  ( X  e.  ( 0 [,] 1 )  ->  X  e.  RR )
3029adantr 481 . . . . . . . . . . . . . 14  |-  ( ( X  e.  ( 0 [,] 1 )  /\  -.  X  =  0
)  ->  X  e.  RR )
31 elunitge0 29945 . . . . . . . . . . . . . . . 16  |-  ( X  e.  ( 0 [,] 1 )  ->  0  <_  X )
3231adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  ( 0 [,] 1 )  /\  -.  X  =  0
)  ->  0  <_  X )
33 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( X  e.  ( 0 [,] 1 )  /\  -.  X  =  0
)  ->  -.  X  =  0 )
3433neqned 2801 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  ( 0 [,] 1 )  /\  -.  X  =  0
)  ->  X  =/=  0 )
3530, 32, 34ne0gt0d 10174 . . . . . . . . . . . . . 14  |-  ( ( X  e.  ( 0 [,] 1 )  /\  -.  X  =  0
)  ->  0  <  X )
3630, 35elrpd 11869 . . . . . . . . . . . . 13  |-  ( ( X  e.  ( 0 [,] 1 )  /\  -.  X  =  0
)  ->  X  e.  RR+ )
3736relogcld 24369 . . . . . . . . . . . 12  |-  ( ( X  e.  ( 0 [,] 1 )  /\  -.  X  =  0
)  ->  ( log `  X )  e.  RR )
3837renegcld 10457 . . . . . . . . . . 11  |-  ( ( X  e.  ( 0 [,] 1 )  /\  -.  X  =  0
)  ->  -u ( log `  X )  e.  RR )
3938rexrd 10089 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 [,] 1 )  /\  -.  X  =  0
)  ->  -u ( log `  X )  e.  RR* )
4028, 39ifclda 4120 . . . . . . . . 9  |-  ( X  e.  ( 0 [,] 1 )  ->  if ( X  =  0 , +oo ,  -u ( log `  X ) )  e.  RR* )
4126, 40eqeltrd 2701 . . . . . . . 8  |-  ( X  e.  ( 0 [,] 1 )  ->  ( F `  X )  e.  RR* )
4241adantr 481 . . . . . . 7  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  ( F `  X )  e.  RR* )
43 neeq1 2856 . . . . . . . . . 10  |-  ( +oo  =  if ( X  =  0 , +oo ,  -u ( log `  X
) )  ->  ( +oo  =/= -oo  <->  if ( X  =  0 , +oo ,  -u ( log `  X
) )  =/= -oo ) )
44 neeq1 2856 . . . . . . . . . 10  |-  ( -u ( log `  X )  =  if ( X  =  0 , +oo ,  -u ( log `  X
) )  ->  ( -u ( log `  X
)  =/= -oo  <->  if ( X  =  0 , +oo ,  -u ( log `  X
) )  =/= -oo ) )
45 pnfnemnf 10094 . . . . . . . . . . 11  |- +oo  =/= -oo
4645a1i 11 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 [,] 1 )  /\  X  =  0 )  -> +oo  =/= -oo )
4738renemnfd 10091 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 [,] 1 )  /\  -.  X  =  0
)  ->  -u ( log `  X )  =/= -oo )
4843, 44, 46, 47ifbothda 4123 . . . . . . . . 9  |-  ( X  e.  ( 0 [,] 1 )  ->  if ( X  =  0 , +oo ,  -u ( log `  X ) )  =/= -oo )
4926, 48eqnetrd 2861 . . . . . . . 8  |-  ( X  e.  ( 0 [,] 1 )  ->  ( F `  X )  =/= -oo )
5049adantr 481 . . . . . . 7  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  ( F `  X )  =/= -oo )
51 xaddpnf1 12057 . . . . . . 7  |-  ( ( ( F `  X
)  e.  RR*  /\  ( F `  X )  =/= -oo )  ->  (
( F `  X
) +e +oo )  = +oo )
5242, 50, 51syl2anc 693 . . . . . 6  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  ( ( F `
 X ) +e +oo )  = +oo )
5319, 52syl5eq 2668 . . . . 5  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  ( ( F `
 X ) +e ( F ` 
0 ) )  = +oo )
54 unitsscn 29942 . . . . . . . . 9  |-  ( 0 [,] 1 )  C_  CC
55 simpl 473 . . . . . . . . 9  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  X  e.  ( 0 [,] 1 ) )
5654, 55sseldi 3601 . . . . . . . 8  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  X  e.  CC )
5756mul01d 10235 . . . . . . 7  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  ( X  x.  0 )  =  0 )
5857fveq2d 6195 . . . . . 6  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  ( F `  ( X  x.  0
) )  =  ( F `  0 ) )
5958, 18syl6eq 2672 . . . . 5  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  ( F `  ( X  x.  0
) )  = +oo )
6053, 59eqtr4d 2659 . . . 4  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  ( ( F `
 X ) +e ( F ` 
0 ) )  =  ( F `  ( X  x.  0 ) ) )
61 simpr 477 . . . . . 6  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  Y  =  0 )
6261fveq2d 6195 . . . . 5  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  ( F `  Y )  =  ( F `  0 ) )
6362oveq2d 6666 . . . 4  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  ( ( F `
 X ) +e ( F `  Y ) )  =  ( ( F `  X ) +e
( F `  0
) ) )
6461oveq2d 6666 . . . . 5  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  ( X  x.  Y )  =  ( X  x.  0 ) )
6564fveq2d 6195 . . . 4  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  ( F `  ( X  x.  Y
) )  =  ( F `  ( X  x.  0 ) ) )
6660, 63, 653eqtr4rd 2667 . . 3  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  =  0 )  ->  ( F `  ( X  x.  Y
) )  =  ( ( F `  X
) +e ( F `  Y ) ) )
676eleq2i 2693 . . . . . 6  |-  ( X  e.  ( { 0 }  u.  ( 0 (,] 1 ) )  <-> 
X  e.  ( 0 [,] 1 ) )
68 elun 3753 . . . . . 6  |-  ( X  e.  ( { 0 }  u.  ( 0 (,] 1 ) )  <-> 
( X  e.  {
0 }  \/  X  e.  ( 0 (,] 1
) ) )
6967, 68bitr3i 266 . . . . 5  |-  ( X  e.  ( 0 [,] 1 )  <->  ( X  e.  { 0 }  \/  X  e.  ( 0 (,] 1 ) ) )
70 elsni 4194 . . . . . 6  |-  ( X  e.  { 0 }  ->  X  =  0 )
7170orim1i 539 . . . . 5  |-  ( ( X  e.  { 0 }  \/  X  e.  ( 0 (,] 1
) )  ->  ( X  =  0  \/  X  e.  ( 0 (,] 1 ) ) )
7269, 71sylbi 207 . . . 4  |-  ( X  e.  ( 0 [,] 1 )  ->  ( X  =  0  \/  X  e.  ( 0 (,] 1 ) ) )
7318oveq1i 6660 . . . . . . . 8  |-  ( ( F `  0 ) +e ( F `
 Y ) )  =  ( +oo +e ( F `  Y ) )
74 simpr 477 . . . . . . . . . 10  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  Y  e.  ( 0 (,] 1 ) )
7515xrge0iifcv 29980 . . . . . . . . . . . 12  |-  ( Y  e.  ( 0 (,] 1 )  ->  ( F `  Y )  =  -u ( log `  Y
) )
76 0le0 11110 . . . . . . . . . . . . . . . . 17  |-  0  <_  0
77 ltpnf 11954 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  RR  ->  1  < +oo )
782, 77ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  1  < +oo
79 iocssioo 12263 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 0  e.  RR*  /\ +oo  e.  RR* )  /\  (
0  <_  0  /\  1  < +oo ) )  -> 
( 0 (,] 1
)  C_  ( 0 (,) +oo ) )
801, 27, 76, 78, 79mp4an 709 . . . . . . . . . . . . . . . 16  |-  ( 0 (,] 1 )  C_  ( 0 (,) +oo )
81 ioorp 12251 . . . . . . . . . . . . . . . 16  |-  ( 0 (,) +oo )  = 
RR+
8280, 81sseqtri 3637 . . . . . . . . . . . . . . 15  |-  ( 0 (,] 1 )  C_  RR+
8382sseli 3599 . . . . . . . . . . . . . 14  |-  ( Y  e.  ( 0 (,] 1 )  ->  Y  e.  RR+ )
8483relogcld 24369 . . . . . . . . . . . . 13  |-  ( Y  e.  ( 0 (,] 1 )  ->  ( log `  Y )  e.  RR )
8584renegcld 10457 . . . . . . . . . . . 12  |-  ( Y  e.  ( 0 (,] 1 )  ->  -u ( log `  Y )  e.  RR )
8675, 85eqeltrd 2701 . . . . . . . . . . 11  |-  ( Y  e.  ( 0 (,] 1 )  ->  ( F `  Y )  e.  RR )
8786rexrd 10089 . . . . . . . . . 10  |-  ( Y  e.  ( 0 (,] 1 )  ->  ( F `  Y )  e.  RR* )
8874, 87syl 17 . . . . . . . . 9  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( F `  Y )  e.  RR* )
8986renemnfd 10091 . . . . . . . . . 10  |-  ( Y  e.  ( 0 (,] 1 )  ->  ( F `  Y )  =/= -oo )
9074, 89syl 17 . . . . . . . . 9  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( F `  Y )  =/= -oo )
91 xaddpnf2 12058 . . . . . . . . 9  |-  ( ( ( F `  Y
)  e.  RR*  /\  ( F `  Y )  =/= -oo )  ->  ( +oo +e ( F `
 Y ) )  = +oo )
9288, 90, 91syl2anc 693 . . . . . . . 8  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( +oo +e ( F `  Y ) )  = +oo )
9373, 92syl5eq 2668 . . . . . . 7  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( ( F `
 0 ) +e ( F `  Y ) )  = +oo )
94 rpssre 11843 . . . . . . . . . . . . 13  |-  RR+  C_  RR
9582, 94sstri 3612 . . . . . . . . . . . 12  |-  ( 0 (,] 1 )  C_  RR
96 ax-resscn 9993 . . . . . . . . . . . 12  |-  RR  C_  CC
9795, 96sstri 3612 . . . . . . . . . . 11  |-  ( 0 (,] 1 )  C_  CC
9897, 74sseldi 3601 . . . . . . . . . 10  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  Y  e.  CC )
9998mul02d 10234 . . . . . . . . 9  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( 0  x.  Y )  =  0 )
10099fveq2d 6195 . . . . . . . 8  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( F `  ( 0  x.  Y
) )  =  ( F `  0 ) )
101100, 18syl6eq 2672 . . . . . . 7  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( F `  ( 0  x.  Y
) )  = +oo )
10293, 101eqtr4d 2659 . . . . . 6  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( ( F `
 0 ) +e ( F `  Y ) )  =  ( F `  (
0  x.  Y ) ) )
103 simpl 473 . . . . . . . 8  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  X  =  0 )
104103fveq2d 6195 . . . . . . 7  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( F `  X )  =  ( F `  0 ) )
105104oveq1d 6665 . . . . . 6  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( ( F `
 X ) +e ( F `  Y ) )  =  ( ( F ` 
0 ) +e
( F `  Y
) ) )
106103oveq1d 6665 . . . . . . 7  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( X  x.  Y )  =  ( 0  x.  Y ) )
107106fveq2d 6195 . . . . . 6  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( F `  ( X  x.  Y
) )  =  ( F `  ( 0  x.  Y ) ) )
108102, 105, 1073eqtr4rd 2667 . . . . 5  |-  ( ( X  =  0  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( F `  ( X  x.  Y
) )  =  ( ( F `  X
) +e ( F `  Y ) ) )
109 simpl 473 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  X  e.  ( 0 (,] 1 ) )
11082, 109sseldi 3601 . . . . . . . . 9  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  X  e.  RR+ )
111110relogcld 24369 . . . . . . . 8  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( log `  X
)  e.  RR )
112111renegcld 10457 . . . . . . 7  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  -u ( log `  X
)  e.  RR )
113 simpr 477 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  Y  e.  ( 0 (,] 1 ) )
11482, 113sseldi 3601 . . . . . . . . 9  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  Y  e.  RR+ )
115114relogcld 24369 . . . . . . . 8  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( log `  Y
)  e.  RR )
116115renegcld 10457 . . . . . . 7  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  -u ( log `  Y
)  e.  RR )
117 rexadd 12063 . . . . . . 7  |-  ( (
-u ( log `  X
)  e.  RR  /\  -u ( log `  Y
)  e.  RR )  ->  ( -u ( log `  X ) +e -u ( log `  Y ) )  =  ( -u ( log `  X )  +  -u ( log `  Y ) ) )
118112, 116, 117syl2anc 693 . . . . . 6  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( -u ( log `  X ) +e -u ( log `  Y ) )  =  ( -u ( log `  X )  +  -u ( log `  Y ) ) )
11915xrge0iifcv 29980 . . . . . . 7  |-  ( X  e.  ( 0 (,] 1 )  ->  ( F `  X )  =  -u ( log `  X
) )
120119, 75oveqan12d 6669 . . . . . 6  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( ( F `
 X ) +e ( F `  Y ) )  =  ( -u ( log `  X ) +e -u ( log `  Y
) ) )
121110rpred 11872 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  X  e.  RR )
122114rpred 11872 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  Y  e.  RR )
123121, 122remulcld 10070 . . . . . . . . 9  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( X  x.  Y )  e.  RR )
124110rpgt0d 11875 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  0  <  X
)
125114rpgt0d 11875 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  0  <  Y
)
126121, 122, 124, 125mulgt0d 10192 . . . . . . . . 9  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  0  <  ( X  x.  Y )
)
127 iocssicc 12261 . . . . . . . . . . . 12  |-  ( 0 (,] 1 )  C_  ( 0 [,] 1
)
128127, 109sseldi 3601 . . . . . . . . . . 11  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  X  e.  ( 0 [,] 1 ) )
129127, 113sseldi 3601 . . . . . . . . . . 11  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  Y  e.  ( 0 [,] 1 ) )
130 iimulcl 22736 . . . . . . . . . . 11  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  e.  ( 0 [,] 1 ) )  ->  ( X  x.  Y )  e.  ( 0 [,] 1 ) )
131128, 129, 130syl2anc 693 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( X  x.  Y )  e.  ( 0 [,] 1 ) )
132 0re 10040 . . . . . . . . . . . 12  |-  0  e.  RR
133132, 2elicc2i 12239 . . . . . . . . . . 11  |-  ( ( X  x.  Y )  e.  ( 0 [,] 1 )  <->  ( ( X  x.  Y )  e.  RR  /\  0  <_ 
( X  x.  Y
)  /\  ( X  x.  Y )  <_  1
) )
134133simp3bi 1078 . . . . . . . . . 10  |-  ( ( X  x.  Y )  e.  ( 0 [,] 1 )  ->  ( X  x.  Y )  <_  1 )
135131, 134syl 17 . . . . . . . . 9  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( X  x.  Y )  <_  1
)
136 elioc2 12236 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
( X  x.  Y
)  e.  ( 0 (,] 1 )  <->  ( ( X  x.  Y )  e.  RR  /\  0  < 
( X  x.  Y
)  /\  ( X  x.  Y )  <_  1
) ) )
1371, 2, 136mp2an 708 . . . . . . . . 9  |-  ( ( X  x.  Y )  e.  ( 0 (,] 1 )  <->  ( ( X  x.  Y )  e.  RR  /\  0  < 
( X  x.  Y
)  /\  ( X  x.  Y )  <_  1
) )
138123, 126, 135, 137syl3anbrc 1246 . . . . . . . 8  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( X  x.  Y )  e.  ( 0 (,] 1 ) )
13915xrge0iifcv 29980 . . . . . . . 8  |-  ( ( X  x.  Y )  e.  ( 0 (,] 1 )  ->  ( F `  ( X  x.  Y ) )  = 
-u ( log `  ( X  x.  Y )
) )
140138, 139syl 17 . . . . . . 7  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( F `  ( X  x.  Y
) )  =  -u ( log `  ( X  x.  Y ) ) )
141110, 114relogmuld 24371 . . . . . . . 8  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( log `  ( X  x.  Y )
)  =  ( ( log `  X )  +  ( log `  Y
) ) )
142141negeqd 10275 . . . . . . 7  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  -u ( log `  ( X  x.  Y )
)  =  -u (
( log `  X
)  +  ( log `  Y ) ) )
143111recnd 10068 . . . . . . . 8  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( log `  X
)  e.  CC )
144115recnd 10068 . . . . . . . 8  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( log `  Y
)  e.  CC )
145143, 144negdid 10405 . . . . . . 7  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  -u ( ( log `  X )  +  ( log `  Y ) )  =  ( -u ( log `  X )  +  -u ( log `  Y
) ) )
146140, 142, 1453eqtrd 2660 . . . . . 6  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( F `  ( X  x.  Y
) )  =  (
-u ( log `  X
)  +  -u ( log `  Y ) ) )
147118, 120, 1463eqtr4rd 2667 . . . . 5  |-  ( ( X  e.  ( 0 (,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( F `  ( X  x.  Y
) )  =  ( ( F `  X
) +e ( F `  Y ) ) )
148108, 147jaoian 824 . . . 4  |-  ( ( ( X  =  0  \/  X  e.  ( 0 (,] 1 ) )  /\  Y  e.  ( 0 (,] 1
) )  ->  ( F `  ( X  x.  Y ) )  =  ( ( F `  X ) +e
( F `  Y
) ) )
14972, 148sylan 488 . . 3  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  e.  ( 0 (,] 1 ) )  ->  ( F `  ( X  x.  Y
) )  =  ( ( F `  X
) +e ( F `  Y ) ) )
15066, 149jaodan 826 . 2  |-  ( ( X  e.  ( 0 [,] 1 )  /\  ( Y  =  0  \/  Y  e.  (
0 (,] 1 ) ) )  ->  ( F `  ( X  x.  Y ) )  =  ( ( F `  X ) +e
( F `  Y
) ) )
15112, 150sylan2 491 1  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  e.  ( 0 [,] 1 ) )  ->  ( F `  ( X  x.  Y
) )  =  ( ( F `  X
) +e ( F `  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    u. cun 3572    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   -ucneg 10267   RR+crp 11832   +ecxad 11944   (,)cioo 12175   (,]cioc 12176   [,]cicc 12178   ↾t crest 16081  ordTopcordt 16159   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  xrge0iifmhm  29985  xrge0pluscn  29986
  Copyright terms: Public domain W3C validator