Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5lem2 Structured version   Visualization version   Unicode version

Theorem ovolval5lem2 40867
Description: |- ( ( ph /\ n e. NN ) -> <. ( ( 1st  ( F n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd  ( F n ) ) >. e. ( RR X. RR ) ) (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5lem2.q  |-  Q  =  { z  e.  RR*  |  E. f  e.  ( ( RR  X.  RR )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) ) }
ovolval5lem2.y  |-  ( ph  ->  Y  =  (Σ^ `  ( ( vol  o.  [,) )  o.  F
) ) )
ovolval5lem2.z  |-  Z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  G
) )
ovolval5lem2.f  |-  ( ph  ->  F : NN --> ( RR 
X.  RR ) )
ovolval5lem2.s  |-  ( ph  ->  A  C_  U. ran  ( [,)  o.  F ) )
ovolval5lem2.w  |-  ( ph  ->  W  e.  RR+ )
ovolval5lem2.g  |-  G  =  ( n  e.  NN  |->  <. ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >. )
Assertion
Ref Expression
ovolval5lem2  |-  ( ph  ->  E. z  e.  Q  z  <_  ( Y +e W ) )
Distinct variable groups:    A, f,
z    n, F    f, G    n, G    z, Q    n, W    z, W    z, Y    f, Z, z    ph, n
Allowed substitution hints:    ph( z, f)    A( n)    Q( f, n)    F( z, f)    G( z)    W( f)    Y( f, n)    Z( n)

Proof of Theorem ovolval5lem2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 ovolval5lem2.z . . . . . 6  |-  Z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  G
) )
21a1i 11 . . . . 5  |-  ( ph  ->  Z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  G
) ) )
3 nnex 11026 . . . . . . 7  |-  NN  e.  _V
43a1i 11 . . . . . 6  |-  ( ph  ->  NN  e.  _V )
5 volioof 40204 . . . . . . . 8  |-  ( vol 
o.  (,) ) : (
RR*  X.  RR* ) --> ( 0 [,] +oo )
65a1i 11 . . . . . . 7  |-  ( ph  ->  ( vol  o.  (,) ) : ( RR*  X.  RR* )
--> ( 0 [,] +oo ) )
7 rexpssxrxp 10084 . . . . . . . 8  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
87a1i 11 . . . . . . 7  |-  ( ph  ->  ( RR  X.  RR )  C_  ( RR*  X.  RR* ) )
9 ovolval5lem2.f . . . . . . . . . . . 12  |-  ( ph  ->  F : NN --> ( RR 
X.  RR ) )
109ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e.  ( RR  X.  RR ) )
11 xp1st 7198 . . . . . . . . . . 11  |-  ( ( F `  n )  e.  ( RR  X.  RR )  ->  ( 1st `  ( F `  n
) )  e.  RR )
1210, 11syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  RR )
13 ovolval5lem2.w . . . . . . . . . . . . 13  |-  ( ph  ->  W  e.  RR+ )
1413rpred 11872 . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  RR )
1514adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  W  e.  RR )
16 2nn 11185 . . . . . . . . . . . . . . 15  |-  2  e.  NN
1716a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  2  e.  NN )
18 nnnn0 11299 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  NN0 )
1917, 18nnexpcld 13030 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
2 ^ n )  e.  NN )
2019nnred 11035 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
2 ^ n )  e.  RR )
2120adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2 ^ n )  e.  RR )
2219nnne0d 11065 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
2 ^ n )  =/=  0 )
2322adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2 ^ n )  =/=  0 )
2415, 21, 23redivcld 10853 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( W  /  ( 2 ^ n ) )  e.  RR )
2512, 24resubcld 10458 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  -  ( W  / 
( 2 ^ n
) ) )  e.  RR )
26 xp2nd 7199 . . . . . . . . . 10  |-  ( ( F `  n )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( F `  n
) )  e.  RR )
2710, 26syl 17 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  RR )
2825, 27opelxpd 5149 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  <. (
( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >.  e.  ( RR 
X.  RR ) )
29 ovolval5lem2.g . . . . . . . 8  |-  G  =  ( n  e.  NN  |->  <. ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >. )
3028, 29fmptd 6385 . . . . . . 7  |-  ( ph  ->  G : NN --> ( RR 
X.  RR ) )
316, 8, 30fcoss 39402 . . . . . 6  |-  ( ph  ->  ( ( vol  o.  (,) )  o.  G
) : NN --> ( 0 [,] +oo ) )
324, 31sge0xrcl 40602 . . . . 5  |-  ( ph  ->  (Σ^ `  ( ( vol  o.  (,) )  o.  G
) )  e.  RR* )
332, 32eqeltrd 2701 . . . 4  |-  ( ph  ->  Z  e.  RR* )
34 reex 10027 . . . . . . . . 9  |-  RR  e.  _V
3534, 34xpex 6962 . . . . . . . 8  |-  ( RR 
X.  RR )  e. 
_V
3635a1i 11 . . . . . . 7  |-  ( ph  ->  ( RR  X.  RR )  e.  _V )
3736, 4elmapd 7871 . . . . . 6  |-  ( ph  ->  ( G  e.  ( ( RR  X.  RR )  ^m  NN )  <->  G : NN
--> ( RR  X.  RR ) ) )
3830, 37mpbird 247 . . . . 5  |-  ( ph  ->  G  e.  ( ( RR  X.  RR )  ^m  NN ) )
39 ovolval5lem2.s . . . . . . 7  |-  ( ph  ->  A  C_  U. ran  ( [,)  o.  F ) )
4030ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  e.  ( RR  X.  RR ) )
41 xp1st 7198 . . . . . . . . . . . . . 14  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( 1st `  ( G `  n
) )  e.  RR )
4240, 41syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  e.  RR )
4342rexrd 10089 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  e.  RR* )
44 xp2nd 7199 . . . . . . . . . . . . . 14  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( G `  n
) )  e.  RR )
4540, 44syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n
) )  e.  RR )
4645rexrd 10089 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n
) )  e.  RR* )
4713adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  W  e.  RR+ )
4819nnrpd 11870 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
2 ^ n )  e.  RR+ )
4948adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2 ^ n )  e.  RR+ )
5047, 49rpdivcld 11889 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( W  /  ( 2 ^ n ) )  e.  RR+ )
5112, 50ltsubrpd 11904 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  -  ( W  / 
( 2 ^ n
) ) )  < 
( 1st `  ( F `  n )
) )
52 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  n  e.  NN )
53 opex 4932 . . . . . . . . . . . . . . . . . . 19  |-  <. (
( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >.  e.  _V
5453a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  <. (
( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >.  e.  _V )
5529fvmpt2 6291 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  NN  /\  <.
( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >.  e.  _V )  ->  ( G `  n
)  =  <. (
( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >. )
5652, 54, 55syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  ( G `  n )  =  <. ( ( 1st `  ( F `  n
) )  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >. )
5756fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  ( 1st `  ( G `  n ) )  =  ( 1st `  <. ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >. ) )
58 ovex 6678 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  ( F `
 n ) )  -  ( W  / 
( 2 ^ n
) ) )  e. 
_V
59 fvex 6201 . . . . . . . . . . . . . . . . . 18  |-  ( 2nd `  ( F `  n
) )  e.  _V
60 op1stg 7180 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) )  e.  _V  /\  ( 2nd `  ( F `  n ) )  e. 
_V )  ->  ( 1st `  <. ( ( 1st `  ( F `  n
) )  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >. )  =  ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) )
6158, 59, 60mp2an 708 . . . . . . . . . . . . . . . . 17  |-  ( 1st `  <. ( ( 1st `  ( F `  n
) )  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >. )  =  ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) )
6261a1i 11 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  ( 1st `  <. ( ( 1st `  ( F `  n
) )  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >. )  =  ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) )
6357, 62eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  ( 1st `  ( G `  n ) )  =  ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) )
6463adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  =  ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) )
6564breq1d 4663 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( G `
 n ) )  <  ( 1st `  ( F `  n )
)  <->  ( ( 1st `  ( F `  n
) )  -  ( W  /  ( 2 ^ n ) ) )  <  ( 1st `  ( F `  n )
) ) )
6651, 65mpbird 247 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  <  ( 1st `  ( F `  n ) ) )
6756fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  ( 2nd `  ( G `  n ) )  =  ( 2nd `  <. ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >. ) )
6858, 59op2nd 7177 . . . . . . . . . . . . . . . . 17  |-  ( 2nd `  <. ( ( 1st `  ( F `  n
) )  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >. )  =  ( 2nd `  ( F `
 n ) )
6968a1i 11 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  ( 2nd `  <. ( ( 1st `  ( F `  n
) )  -  ( W  /  ( 2 ^ n ) ) ) ,  ( 2nd `  ( F `  n )
) >. )  =  ( 2nd `  ( F `
 n ) ) )
7067, 69eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  ( 2nd `  ( G `  n ) )  =  ( 2nd `  ( F `  n )
) )
7170adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n
) )  =  ( 2nd `  ( F `
 n ) ) )
7271eqcomd 2628 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  =  ( 2nd `  ( G `
 n ) ) )
7327, 72eqled 10140 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  <_  ( 2nd `  ( G `  n ) ) )
74 icossioo 12264 . . . . . . . . . . . 12  |-  ( ( ( ( 1st `  ( G `  n )
)  e.  RR*  /\  ( 2nd `  ( G `  n ) )  e. 
RR* )  /\  (
( 1st `  ( G `  n )
)  <  ( 1st `  ( F `  n
) )  /\  ( 2nd `  ( F `  n ) )  <_ 
( 2nd `  ( G `  n )
) ) )  -> 
( ( 1st `  ( F `  n )
) [,) ( 2nd `  ( F `  n
) ) )  C_  ( ( 1st `  ( G `  n )
) (,) ( 2nd `  ( G `  n
) ) ) )
7543, 46, 66, 73, 74syl22anc 1327 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) ) [,) ( 2nd `  ( F `  n )
) )  C_  (
( 1st `  ( G `  n )
) (,) ( 2nd `  ( G `  n
) ) ) )
76 1st2nd2 7205 . . . . . . . . . . . . . . 15  |-  ( ( F `  n )  e.  ( RR  X.  RR )  ->  ( F `
 n )  = 
<. ( 1st `  ( F `  n )
) ,  ( 2nd `  ( F `  n
) ) >. )
7710, 76syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  = 
<. ( 1st `  ( F `  n )
) ,  ( 2nd `  ( F `  n
) ) >. )
7877fveq2d 6195 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( [,) `  ( F `  n
) )  =  ( [,) `  <. ( 1st `  ( F `  n ) ) ,  ( 2nd `  ( F `  n )
) >. ) )
79 df-ov 6653 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( F `
 n ) ) [,) ( 2nd `  ( F `  n )
) )  =  ( [,) `  <. ( 1st `  ( F `  n ) ) ,  ( 2nd `  ( F `  n )
) >. )
8079a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) ) [,) ( 2nd `  ( F `  n )
) )  =  ( [,) `  <. ( 1st `  ( F `  n ) ) ,  ( 2nd `  ( F `  n )
) >. ) )
8178, 80eqtr4d 2659 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( [,) `  ( F `  n
) )  =  ( ( 1st `  ( F `  n )
) [,) ( 2nd `  ( F `  n
) ) ) )
82 1st2nd2 7205 . . . . . . . . . . . . . . 15  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( G `
 n )  = 
<. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. )
8340, 82syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  = 
<. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. )
8483fveq2d 6195 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( (,) `  ( G `  n
) )  =  ( (,) `  <. ( 1st `  ( G `  n ) ) ,  ( 2nd `  ( G `  n )
) >. ) )
85 df-ov 6653 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( G `
 n ) ) (,) ( 2nd `  ( G `  n )
) )  =  ( (,) `  <. ( 1st `  ( G `  n ) ) ,  ( 2nd `  ( G `  n )
) >. )
8685a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( G `
 n ) ) (,) ( 2nd `  ( G `  n )
) )  =  ( (,) `  <. ( 1st `  ( G `  n ) ) ,  ( 2nd `  ( G `  n )
) >. ) )
8784, 86eqtr4d 2659 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( (,) `  ( G `  n
) )  =  ( ( 1st `  ( G `  n )
) (,) ( 2nd `  ( G `  n
) ) ) )
8881, 87sseq12d 3634 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( [,) `  ( F `
 n ) ) 
C_  ( (,) `  ( G `  n )
)  <->  ( ( 1st `  ( F `  n
) ) [,) ( 2nd `  ( F `  n ) ) ) 
C_  ( ( 1st `  ( G `  n
) ) (,) ( 2nd `  ( G `  n ) ) ) ) )
8975, 88mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( [,) `  ( F `  n
) )  C_  ( (,) `  ( G `  n ) ) )
9089ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN  ( [,) `  ( F `
 n ) ) 
C_  ( (,) `  ( G `  n )
) )
91 ss2iun 4536 . . . . . . . . 9  |-  ( A. n  e.  NN  ( [,) `  ( F `  n ) )  C_  ( (,) `  ( G `
 n ) )  ->  U_ n  e.  NN  ( [,) `  ( F `
 n ) ) 
C_  U_ n  e.  NN  ( (,) `  ( G `
 n ) ) )
9290, 91syl 17 . . . . . . . 8  |-  ( ph  ->  U_ n  e.  NN  ( [,) `  ( F `
 n ) ) 
C_  U_ n  e.  NN  ( (,) `  ( G `
 n ) ) )
93 fvex 6201 . . . . . . . . . . . . 13  |-  ( [,) `  ( F `  n
) )  e.  _V
9493rgenw 2924 . . . . . . . . . . . 12  |-  A. n  e.  NN  ( [,) `  ( F `  n )
)  e.  _V
9594a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( [,) `  ( F `
 n ) )  e.  _V )
96 dfiun3g 5378 . . . . . . . . . . 11  |-  ( A. n  e.  NN  ( [,) `  ( F `  n ) )  e. 
_V  ->  U_ n  e.  NN  ( [,) `  ( F `
 n ) )  =  U. ran  (
n  e.  NN  |->  ( [,) `  ( F `
 n ) ) ) )
9795, 96syl 17 . . . . . . . . . 10  |-  ( ph  ->  U_ n  e.  NN  ( [,) `  ( F `
 n ) )  =  U. ran  (
n  e.  NN  |->  ( [,) `  ( F `
 n ) ) ) )
98 icof 39411 . . . . . . . . . . . . . . 15  |-  [,) :
( RR*  X.  RR* ) --> ~P RR*
9998a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  [,) : ( RR*  X. 
RR* ) --> ~P RR* )
1009, 8, 99fcomptss 39395 . . . . . . . . . . . . 13  |-  ( ph  ->  ( [,)  o.  F
)  =  ( n  e.  NN  |->  ( [,) `  ( F `  n
) ) ) )
101100eqcomd 2628 . . . . . . . . . . . 12  |-  ( ph  ->  ( n  e.  NN  |->  ( [,) `  ( F `
 n ) ) )  =  ( [,) 
o.  F ) )
102101rneqd 5353 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( n  e.  NN  |->  ( [,) `  ( F `  n )
) )  =  ran  ( [,)  o.  F ) )
103102unieqd 4446 . . . . . . . . . 10  |-  ( ph  ->  U. ran  ( n  e.  NN  |->  ( [,) `  ( F `  n
) ) )  = 
U. ran  ( [,)  o.  F ) )
10497, 103eqtr2d 2657 . . . . . . . . 9  |-  ( ph  ->  U. ran  ( [,) 
o.  F )  = 
U_ n  e.  NN  ( [,) `  ( F `
 n ) ) )
105 fvex 6201 . . . . . . . . . . . . 13  |-  ( (,) `  ( G `  n
) )  e.  _V
106105rgenw 2924 . . . . . . . . . . . 12  |-  A. n  e.  NN  ( (,) `  ( G `  n )
)  e.  _V
107106a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( (,) `  ( G `
 n ) )  e.  _V )
108 dfiun3g 5378 . . . . . . . . . . 11  |-  ( A. n  e.  NN  ( (,) `  ( G `  n ) )  e. 
_V  ->  U_ n  e.  NN  ( (,) `  ( G `
 n ) )  =  U. ran  (
n  e.  NN  |->  ( (,) `  ( G `
 n ) ) ) )
109107, 108syl 17 . . . . . . . . . 10  |-  ( ph  ->  U_ n  e.  NN  ( (,) `  ( G `
 n ) )  =  U. ran  (
n  e.  NN  |->  ( (,) `  ( G `
 n ) ) ) )
110 ioof 12271 . . . . . . . . . . . . . . 15  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
111110a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  (,) : ( RR*  X. 
RR* ) --> ~P RR )
11230, 8, 111fcomptss 39395 . . . . . . . . . . . . 13  |-  ( ph  ->  ( (,)  o.  G
)  =  ( n  e.  NN  |->  ( (,) `  ( G `  n
) ) ) )
113112eqcomd 2628 . . . . . . . . . . . 12  |-  ( ph  ->  ( n  e.  NN  |->  ( (,) `  ( G `
 n ) ) )  =  ( (,) 
o.  G ) )
114113rneqd 5353 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( n  e.  NN  |->  ( (,) `  ( G `  n )
) )  =  ran  ( (,)  o.  G ) )
115114unieqd 4446 . . . . . . . . . 10  |-  ( ph  ->  U. ran  ( n  e.  NN  |->  ( (,) `  ( G `  n
) ) )  = 
U. ran  ( (,)  o.  G ) )
116109, 115eqtr2d 2657 . . . . . . . . 9  |-  ( ph  ->  U. ran  ( (,) 
o.  G )  = 
U_ n  e.  NN  ( (,) `  ( G `
 n ) ) )
117104, 116sseq12d 3634 . . . . . . . 8  |-  ( ph  ->  ( U. ran  ( [,)  o.  F )  C_  U.
ran  ( (,)  o.  G )  <->  U_ n  e.  NN  ( [,) `  ( F `  n )
)  C_  U_ n  e.  NN  ( (,) `  ( G `  n )
) ) )
11892, 117mpbird 247 . . . . . . 7  |-  ( ph  ->  U. ran  ( [,) 
o.  F )  C_  U.
ran  ( (,)  o.  G ) )
11939, 118sstrd 3613 . . . . . 6  |-  ( ph  ->  A  C_  U. ran  ( (,)  o.  G ) )
120119, 2jca 554 . . . . 5  |-  ( ph  ->  ( A  C_  U. ran  ( (,)  o.  G )  /\  Z  =  (Σ^ `  (
( vol  o.  (,) )  o.  G )
) ) )
121 coeq2 5280 . . . . . . . . . 10  |-  ( f  =  G  ->  ( (,)  o.  f )  =  ( (,)  o.  G
) )
122121rneqd 5353 . . . . . . . . 9  |-  ( f  =  G  ->  ran  ( (,)  o.  f )  =  ran  ( (,) 
o.  G ) )
123122unieqd 4446 . . . . . . . 8  |-  ( f  =  G  ->  U. ran  ( (,)  o.  f )  =  U. ran  ( (,)  o.  G ) )
124123sseq2d 3633 . . . . . . 7  |-  ( f  =  G  ->  ( A  C_  U. ran  ( (,)  o.  f )  <->  A  C_  U. ran  ( (,)  o.  G ) ) )
125 coeq2 5280 . . . . . . . . 9  |-  ( f  =  G  ->  (
( vol  o.  (,) )  o.  f )  =  ( ( vol 
o.  (,) )  o.  G
) )
126125fveq2d 6195 . . . . . . . 8  |-  ( f  =  G  ->  (Σ^ `  (
( vol  o.  (,) )  o.  f )
)  =  (Σ^ `  ( ( vol  o.  (,) )  o.  G
) ) )
127126eqeq2d 2632 . . . . . . 7  |-  ( f  =  G  ->  ( Z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) )  <->  Z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  G
) ) ) )
128124, 127anbi12d 747 . . . . . 6  |-  ( f  =  G  ->  (
( A  C_  U. ran  ( (,)  o.  f )  /\  Z  =  (Σ^ `  (
( vol  o.  (,) )  o.  f )
) )  <->  ( A  C_ 
U. ran  ( (,)  o.  G )  /\  Z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  G
) ) ) ) )
129128rspcev 3309 . . . . 5  |-  ( ( G  e.  ( ( RR  X.  RR )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  G )  /\  Z  =  (Σ^ `  (
( vol  o.  (,) )  o.  G )
) ) )  ->  E. f  e.  (
( RR  X.  RR )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  Z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) ) )
13038, 120, 129syl2anc 693 . . . 4  |-  ( ph  ->  E. f  e.  ( ( RR  X.  RR )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  Z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) ) )
13133, 130jca 554 . . 3  |-  ( ph  ->  ( Z  e.  RR*  /\ 
E. f  e.  ( ( RR  X.  RR )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  Z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) ) ) )
132 eqeq1 2626 . . . . . 6  |-  ( z  =  Z  ->  (
z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) )  <->  Z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) ) )
133132anbi2d 740 . . . . 5  |-  ( z  =  Z  ->  (
( A  C_  U. ran  ( (,)  o.  f )  /\  z  =  (Σ^ `  (
( vol  o.  (,) )  o.  f )
) )  <->  ( A  C_ 
U. ran  ( (,)  o.  f )  /\  Z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) ) ) )
134133rexbidv 3052 . . . 4  |-  ( z  =  Z  ->  ( E. f  e.  (
( RR  X.  RR )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) )  <->  E. f  e.  ( ( RR  X.  RR )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  Z  =  (Σ^ `  (
( vol  o.  (,) )  o.  f )
) ) ) )
135 ovolval5lem2.q . . . 4  |-  Q  =  { z  e.  RR*  |  E. f  e.  ( ( RR  X.  RR )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  z  =  (Σ^ `  ( ( vol  o.  (,) )  o.  f
) ) ) }
136134, 135elrab2 3366 . . 3  |-  ( Z  e.  Q  <->  ( Z  e.  RR*  /\  E. f  e.  ( ( RR  X.  RR )  ^m  NN ) ( A  C_  U. ran  ( (,)  o.  f )  /\  Z  =  (Σ^ `  (
( vol  o.  (,) )  o.  f )
) ) ) )
137131, 136sylibr 224 . 2  |-  ( ph  ->  Z  e.  Q )
138 fveq2 6191 . . . . . . 7  |-  ( m  =  n  ->  ( F `  m )  =  ( F `  n ) )
139138fveq2d 6195 . . . . . 6  |-  ( m  =  n  ->  ( 1st `  ( F `  m ) )  =  ( 1st `  ( F `  n )
) )
140138fveq2d 6195 . . . . . 6  |-  ( m  =  n  ->  ( 2nd `  ( F `  m ) )  =  ( 2nd `  ( F `  n )
) )
141139, 140breq12d 4666 . . . . 5  |-  ( m  =  n  ->  (
( 1st `  ( F `  m )
)  <  ( 2nd `  ( F `  m
) )  <->  ( 1st `  ( F `  n
) )  <  ( 2nd `  ( F `  n ) ) ) )
142141cbvrabv 3199 . . . 4  |-  { m  e.  NN  |  ( 1st `  ( F `  m
) )  <  ( 2nd `  ( F `  m ) ) }  =  { n  e.  NN  |  ( 1st `  ( F `  n
) )  <  ( 2nd `  ( F `  n ) ) }
14312, 27, 13, 142ovolval5lem1 40866 . . 3  |-  ( ph  ->  (Σ^ `  ( n  e.  NN  |->  ( vol `  ( ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) (,) ( 2nd `  ( F `  n )
) ) ) ) )  <_  ( (Σ^ `  (
n  e.  NN  |->  ( vol `  ( ( 1st `  ( F `
 n ) ) [,) ( 2nd `  ( F `  n )
) ) ) ) ) +e W ) )
144 nfcv 2764 . . . . . . . 8  |-  F/_ n G
14530, 8fssd 6057 . . . . . . . 8  |-  ( ph  ->  G : NN --> ( RR*  X. 
RR* ) )
146144, 145volioofmpt 40211 . . . . . . 7  |-  ( ph  ->  ( ( vol  o.  (,) )  o.  G
)  =  ( n  e.  NN  |->  ( vol `  ( ( 1st `  ( G `  n )
) (,) ( 2nd `  ( G `  n
) ) ) ) ) )
14764, 71oveq12d 6668 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( G `
 n ) ) (,) ( 2nd `  ( G `  n )
) )  =  ( ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) (,) ( 2nd `  ( F `  n )
) ) )
148147fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol `  ( ( 1st `  ( G `  n )
) (,) ( 2nd `  ( G `  n
) ) ) )  =  ( vol `  (
( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) (,) ( 2nd `  ( F `  n )
) ) ) )
149148mpteq2dva 4744 . . . . . . 7  |-  ( ph  ->  ( n  e.  NN  |->  ( vol `  ( ( 1st `  ( G `
 n ) ) (,) ( 2nd `  ( G `  n )
) ) ) )  =  ( n  e.  NN  |->  ( vol `  (
( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) (,) ( 2nd `  ( F `  n )
) ) ) ) )
150146, 149eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( ( vol  o.  (,) )  o.  G
)  =  ( n  e.  NN  |->  ( vol `  ( ( ( 1st `  ( F `  n
) )  -  ( W  /  ( 2 ^ n ) ) ) (,) ( 2nd `  ( F `  n )
) ) ) ) )
151150fveq2d 6195 . . . . 5  |-  ( ph  ->  (Σ^ `  ( ( vol  o.  (,) )  o.  G
) )  =  (Σ^ `  (
n  e.  NN  |->  ( vol `  ( ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) (,) ( 2nd `  ( F `  n )
) ) ) ) ) )
1522, 151eqtrd 2656 . . . 4  |-  ( ph  ->  Z  =  (Σ^ `  ( n  e.  NN  |->  ( vol `  ( ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) (,) ( 2nd `  ( F `  n )
) ) ) ) ) )
153 ovolval5lem2.y . . . . . 6  |-  ( ph  ->  Y  =  (Σ^ `  ( ( vol  o.  [,) )  o.  F
) ) )
154 nfcv 2764 . . . . . . . 8  |-  F/_ n F
155 ressxr 10083 . . . . . . . . . . 11  |-  RR  C_  RR*
156 xpss2 5229 . . . . . . . . . . 11  |-  ( RR  C_  RR*  ->  ( RR  X.  RR )  C_  ( RR  X.  RR* ) )
157155, 156ax-mp 5 . . . . . . . . . 10  |-  ( RR 
X.  RR )  C_  ( RR  X.  RR* )
158157a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( RR  X.  RR )  C_  ( RR  X.  RR* ) )
1599, 158fssd 6057 . . . . . . . 8  |-  ( ph  ->  F : NN --> ( RR 
X.  RR* ) )
160154, 159volicofmpt 40214 . . . . . . 7  |-  ( ph  ->  ( ( vol  o.  [,) )  o.  F
)  =  ( n  e.  NN  |->  ( vol `  ( ( 1st `  ( F `  n )
) [,) ( 2nd `  ( F `  n
) ) ) ) ) )
161160fveq2d 6195 . . . . . 6  |-  ( ph  ->  (Σ^ `  ( ( vol  o.  [,) )  o.  F
) )  =  (Σ^ `  (
n  e.  NN  |->  ( vol `  ( ( 1st `  ( F `
 n ) ) [,) ( 2nd `  ( F `  n )
) ) ) ) ) )
162153, 161eqtrd 2656 . . . . 5  |-  ( ph  ->  Y  =  (Σ^ `  ( n  e.  NN  |->  ( vol `  ( ( 1st `  ( F `
 n ) ) [,) ( 2nd `  ( F `  n )
) ) ) ) ) )
163162oveq1d 6665 . . . 4  |-  ( ph  ->  ( Y +e
W )  =  ( (Σ^ `  ( n  e.  NN  |->  ( vol `  ( ( 1st `  ( F `
 n ) ) [,) ( 2nd `  ( F `  n )
) ) ) ) ) +e W ) )
164152, 163breq12d 4666 . . 3  |-  ( ph  ->  ( Z  <_  ( Y +e W )  <-> 
(Σ^ `  ( n  e.  NN  |->  ( vol `  ( ( ( 1st `  ( F `  n )
)  -  ( W  /  ( 2 ^ n ) ) ) (,) ( 2nd `  ( F `  n )
) ) ) ) )  <_  ( (Σ^ `  (
n  e.  NN  |->  ( vol `  ( ( 1st `  ( F `
 n ) ) [,) ( 2nd `  ( F `  n )
) ) ) ) ) +e W ) ) )
165143, 164mpbird 247 . 2  |-  ( ph  ->  Z  <_  ( Y +e W ) )
166 breq1 4656 . . 3  |-  ( z  =  Z  ->  (
z  <_  ( Y +e W )  <-> 
Z  <_  ( Y +e W ) ) )
167166rspcev 3309 . 2  |-  ( ( Z  e.  Q  /\  Z  <_  ( Y +e W ) )  ->  E. z  e.  Q  z  <_  ( Y +e W ) )
168137, 165, 167syl2anc 693 1  |-  ( ph  ->  E. z  e.  Q  z  <_  ( Y +e W ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   <.cop 4183   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   RRcr 9935   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   RR+crp 11832   +ecxad 11944   (,)cioo 12175   [,)cico 12177   [,]cicc 12178   ^cexp 12860   volcvol 23232  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-sumge0 40580
This theorem is referenced by:  ovolval5lem3  40868
  Copyright terms: Public domain W3C validator