MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1lip2 Structured version   Visualization version   Unicode version

Theorem c1lip2 23761
Description: C1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
c1lip2.a  |-  ( ph  ->  A  e.  RR )
c1lip2.b  |-  ( ph  ->  B  e.  RR )
c1lip2.f  |-  ( ph  ->  F  e.  ( ( C^n `  RR ) `  1 )
)
c1lip2.rn  |-  ( ph  ->  ran  F  C_  RR )
c1lip2.dm  |-  ( ph  ->  ( A [,] B
)  C_  dom  F )
Assertion
Ref Expression
c1lip2  |-  ( ph  ->  E. k  e.  RR  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) )
Distinct variable groups:    ph, x, y, k    x, A, y, k    x, B, y, k    x, F, y, k

Proof of Theorem c1lip2
StepHypRef Expression
1 c1lip2.a . 2  |-  ( ph  ->  A  e.  RR )
2 c1lip2.b . 2  |-  ( ph  ->  B  e.  RR )
3 c1lip2.f . . 3  |-  ( ph  ->  F  e.  ( ( C^n `  RR ) `  1 )
)
4 ax-resscn 9993 . . . . 5  |-  RR  C_  CC
5 1nn0 11308 . . . . 5  |-  1  e.  NN0
6 elcpn 23697 . . . . 5  |-  ( ( RR  C_  CC  /\  1  e.  NN0 )  ->  ( F  e.  ( (
C^n `  RR ) `  1 )  <->  ( F  e.  ( CC 
^pm  RR )  /\  (
( RR  Dn
F ) `  1
)  e.  ( dom 
F -cn-> CC ) ) ) )
74, 5, 6mp2an 708 . . . 4  |-  ( F  e.  ( ( C^n `  RR ) `
 1 )  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( ( RR  Dn F ) `
 1 )  e.  ( dom  F -cn-> CC ) ) )
87simplbi 476 . . 3  |-  ( F  e.  ( ( C^n `  RR ) `
 1 )  ->  F  e.  ( CC  ^pm 
RR ) )
93, 8syl 17 . 2  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
10 c1lip2.dm . . 3  |-  ( ph  ->  ( A [,] B
)  C_  dom  F )
11 pmfun 7877 . . . . . . . . 9  |-  ( F  e.  ( CC  ^pm  RR )  ->  Fun  F )
129, 11syl 17 . . . . . . . 8  |-  ( ph  ->  Fun  F )
13 funfn 5918 . . . . . . . 8  |-  ( Fun 
F  <->  F  Fn  dom  F )
1412, 13sylib 208 . . . . . . 7  |-  ( ph  ->  F  Fn  dom  F
)
15 c1lip2.rn . . . . . . 7  |-  ( ph  ->  ran  F  C_  RR )
16 df-f 5892 . . . . . . 7  |-  ( F : dom  F --> RR  <->  ( F  Fn  dom  F  /\  ran  F 
C_  RR ) )
1714, 15, 16sylanbrc 698 . . . . . 6  |-  ( ph  ->  F : dom  F --> RR )
18 cnex 10017 . . . . . . . . 9  |-  CC  e.  _V
19 reex 10027 . . . . . . . . 9  |-  RR  e.  _V
2018, 19elpm2 7889 . . . . . . . 8  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
2120simprbi 480 . . . . . . 7  |-  ( F  e.  ( CC  ^pm  RR )  ->  dom  F  C_  RR )
229, 21syl 17 . . . . . 6  |-  ( ph  ->  dom  F  C_  RR )
23 dvfre 23714 . . . . . 6  |-  ( ( F : dom  F --> RR  /\  dom  F  C_  RR )  ->  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> RR )
2417, 22, 23syl2anc 693 . . . . 5  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
25 0p1e1 11132 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
2625fveq2i 6194 . . . . . . . . . 10  |-  ( ( RR  Dn F ) `  ( 0  +  1 ) )  =  ( ( RR  Dn F ) `
 1 )
27 0nn0 11307 . . . . . . . . . . . 12  |-  0  e.  NN0
28 dvnp1 23688 . . . . . . . . . . . 12  |-  ( ( RR  C_  CC  /\  F  e.  ( CC  ^pm  RR )  /\  0  e.  NN0 )  ->  ( ( RR  Dn F ) `
 ( 0  +  1 ) )  =  ( RR  _D  (
( RR  Dn
F ) `  0
) ) )
294, 27, 28mp3an13 1415 . . . . . . . . . . 11  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( ( RR  Dn F ) `
 ( 0  +  1 ) )  =  ( RR  _D  (
( RR  Dn
F ) `  0
) ) )
309, 29syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( RR  Dn F ) `  ( 0  +  1 ) )  =  ( RR  _D  ( ( RR  Dn F ) `  0 ) ) )
3126, 30syl5eqr 2670 . . . . . . . . 9  |-  ( ph  ->  ( ( RR  Dn F ) ` 
1 )  =  ( RR  _D  ( ( RR  Dn F ) `  0 ) ) )
32 dvn0 23687 . . . . . . . . . . 11  |-  ( ( RR  C_  CC  /\  F  e.  ( CC  ^pm  RR ) )  ->  (
( RR  Dn
F ) `  0
)  =  F )
334, 9, 32sylancr 695 . . . . . . . . . 10  |-  ( ph  ->  ( ( RR  Dn F ) ` 
0 )  =  F )
3433oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
( RR  Dn
F ) `  0
) )  =  ( RR  _D  F ) )
3531, 34eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( ( RR  Dn F ) ` 
1 )  =  ( RR  _D  F ) )
367simprbi 480 . . . . . . . . 9  |-  ( F  e.  ( ( C^n `  RR ) `
 1 )  -> 
( ( RR  Dn F ) ` 
1 )  e.  ( dom  F -cn-> CC ) )
373, 36syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( RR  Dn F ) ` 
1 )  e.  ( dom  F -cn-> CC ) )
3835, 37eqeltrrd 2702 . . . . . . 7  |-  ( ph  ->  ( RR  _D  F
)  e.  ( dom 
F -cn-> CC ) )
39 cncff 22696 . . . . . . 7  |-  ( ( RR  _D  F )  e.  ( dom  F -cn->
CC )  ->  ( RR  _D  F ) : dom  F --> CC )
40 fdm 6051 . . . . . . 7  |-  ( ( RR  _D  F ) : dom  F --> CC  ->  dom  ( RR  _D  F
)  =  dom  F
)
4138, 39, 403syl 18 . . . . . 6  |-  ( ph  ->  dom  ( RR  _D  F )  =  dom  F )
4241feq2d 6031 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> RR  <->  ( RR  _D  F ) : dom  F --> RR ) )
4324, 42mpbid 222 . . . 4  |-  ( ph  ->  ( RR  _D  F
) : dom  F --> RR )
44 cncffvrn 22701 . . . . 5  |-  ( ( RR  C_  CC  /\  ( RR  _D  F )  e.  ( dom  F -cn-> CC ) )  ->  (
( RR  _D  F
)  e.  ( dom 
F -cn-> RR )  <->  ( RR  _D  F ) : dom  F --> RR ) )
454, 38, 44sylancr 695 . . . 4  |-  ( ph  ->  ( ( RR  _D  F )  e.  ( dom  F -cn-> RR )  <-> 
( RR  _D  F
) : dom  F --> RR ) )
4643, 45mpbird 247 . . 3  |-  ( ph  ->  ( RR  _D  F
)  e.  ( dom 
F -cn-> RR ) )
47 rescncf 22700 . . 3  |-  ( ( A [,] B ) 
C_  dom  F  ->  ( ( RR  _D  F
)  e.  ( dom 
F -cn-> RR )  ->  (
( RR  _D  F
)  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) ) )
4810, 46, 47sylc 65 . 2  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
4919prid1 4297 . . . . . . . . 9  |-  RR  e.  { RR ,  CC }
50 1eluzge0 11732 . . . . . . . . 9  |-  1  e.  ( ZZ>= `  0 )
51 cpnord 23698 . . . . . . . . 9  |-  ( ( RR  e.  { RR ,  CC }  /\  0  e.  NN0  /\  1  e.  ( ZZ>= `  0 )
)  ->  ( (
C^n `  RR ) `  1 )  C_  ( ( C^n `
 RR ) ` 
0 ) )
5249, 27, 50, 51mp3an 1424 . . . . . . . 8  |-  ( ( C^n `  RR ) `  1 )  C_  ( ( C^n `
 RR ) ` 
0 )
5352, 3sseldi 3601 . . . . . . 7  |-  ( ph  ->  F  e.  ( ( C^n `  RR ) `  0 )
)
54 elcpn 23697 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  0  e.  NN0 )  ->  ( F  e.  ( (
C^n `  RR ) `  0 )  <->  ( F  e.  ( CC 
^pm  RR )  /\  (
( RR  Dn
F ) `  0
)  e.  ( dom 
F -cn-> CC ) ) ) )
554, 27, 54mp2an 708 . . . . . . . 8  |-  ( F  e.  ( ( C^n `  RR ) `
 0 )  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( ( RR  Dn F ) `
 0 )  e.  ( dom  F -cn-> CC ) ) )
5655simprbi 480 . . . . . . 7  |-  ( F  e.  ( ( C^n `  RR ) `
 0 )  -> 
( ( RR  Dn F ) ` 
0 )  e.  ( dom  F -cn-> CC ) )
5753, 56syl 17 . . . . . 6  |-  ( ph  ->  ( ( RR  Dn F ) ` 
0 )  e.  ( dom  F -cn-> CC ) )
5833, 57eqeltrrd 2702 . . . . 5  |-  ( ph  ->  F  e.  ( dom 
F -cn-> CC ) )
59 cncffvrn 22701 . . . . 5  |-  ( ( RR  C_  CC  /\  F  e.  ( dom  F -cn-> CC ) )  ->  ( F  e.  ( dom  F
-cn-> RR )  <->  F : dom  F --> RR ) )
604, 58, 59sylancr 695 . . . 4  |-  ( ph  ->  ( F  e.  ( dom  F -cn-> RR )  <-> 
F : dom  F --> RR ) )
6117, 60mpbird 247 . . 3  |-  ( ph  ->  F  e.  ( dom 
F -cn-> RR ) )
62 rescncf 22700 . . 3  |-  ( ( A [,] B ) 
C_  dom  F  ->  ( F  e.  ( dom 
F -cn-> RR )  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) ) )
6310, 61, 62sylc 65 . 2  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
641, 2, 9, 48, 63c1lip1 23760 1  |-  ( ph  ->  E. k  e.  RR  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
k  x.  ( abs `  ( y  -  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   {cpr 4179   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   NN0cn0 11292   ZZ>=cuz 11687   [,]cicc 12178   abscabs 13974   -cn->ccncf 22679    _D cdv 23627    Dncdvn 23628   C^nccpn 23629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-dvn 23632  df-cpn 23633
This theorem is referenced by:  c1lip3  23762
  Copyright terms: Public domain W3C validator