Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27b Structured version   Visualization version   Unicode version

Theorem jm2.27b 37573
Description: Lemma for jm2.27 37575. Expand existential quantifiers for reverse direction. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Hypotheses
Ref Expression
jm2.27a1  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
jm2.27a2  |-  ( ph  ->  B  e.  NN )
jm2.27a3  |-  ( ph  ->  C  e.  NN )
jm2.27a4  |-  ( ph  ->  D  e.  NN0 )
jm2.27a5  |-  ( ph  ->  E  e.  NN0 )
jm2.27a6  |-  ( ph  ->  F  e.  NN0 )
jm2.27a7  |-  ( ph  ->  G  e.  NN0 )
jm2.27a8  |-  ( ph  ->  H  e.  NN0 )
jm2.27a9  |-  ( ph  ->  I  e.  NN0 )
jm2.27a10  |-  ( ph  ->  J  e.  NN0 )
jm2.27a11  |-  ( ph  ->  ( ( D ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( C ^ 2 ) ) )  =  1 )
jm2.27a12  |-  ( ph  ->  ( ( F ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( E ^ 2 ) ) )  =  1 )
jm2.27a13  |-  ( ph  ->  G  e.  ( ZZ>= ` 
2 ) )
jm2.27a14  |-  ( ph  ->  ( ( I ^
2 )  -  (
( ( G ^
2 )  -  1 )  x.  ( H ^ 2 ) ) )  =  1 )
jm2.27a15  |-  ( ph  ->  E  =  ( ( J  +  1 )  x.  ( 2  x.  ( C ^ 2 ) ) ) )
jm2.27a16  |-  ( ph  ->  F  ||  ( G  -  A ) )
jm2.27a17  |-  ( ph  ->  ( 2  x.  C
)  ||  ( G  -  1 ) )
jm2.27a18  |-  ( ph  ->  F  ||  ( H  -  C ) )
jm2.27a19  |-  ( ph  ->  ( 2  x.  C
)  ||  ( H  -  B ) )
jm2.27a20  |-  ( ph  ->  B  <_  C )
Assertion
Ref Expression
jm2.27b  |-  ( ph  ->  C  =  ( A Yrm  B ) )

Proof of Theorem jm2.27b
Dummy variables  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 jm2.27a11 . . 3  |-  ( ph  ->  ( ( D ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( C ^ 2 ) ) )  =  1 )
2 jm2.27a1 . . . 4  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
3 jm2.27a4 . . . 4  |-  ( ph  ->  D  e.  NN0 )
4 jm2.27a3 . . . . 5  |-  ( ph  ->  C  e.  NN )
54nnzd 11481 . . . 4  |-  ( ph  ->  C  e.  ZZ )
6 rmxycomplete 37482 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  D  e.  NN0  /\  C  e.  ZZ )  ->  (
( ( D ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( C ^ 2 ) ) )  =  1  <->  E. p  e.  ZZ  ( D  =  ( A Xrm  p
)  /\  C  =  ( A Yrm  p ) ) ) )
72, 3, 5, 6syl3anc 1326 . . 3  |-  ( ph  ->  ( ( ( D ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  ( C ^ 2 ) ) )  =  1  <->  E. p  e.  ZZ  ( D  =  ( A Xrm  p
)  /\  C  =  ( A Yrm  p ) ) ) )
81, 7mpbid 222 . 2  |-  ( ph  ->  E. p  e.  ZZ  ( D  =  ( A Xrm 
p )  /\  C  =  ( A Yrm  p ) ) )
9 jm2.27a12 . . . . 5  |-  ( ph  ->  ( ( F ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( E ^ 2 ) ) )  =  1 )
109adantr 481 . . . 4  |-  ( (
ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  ->  ( ( F ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  ( E ^ 2 ) ) )  =  1 )
112adantr 481 . . . . 5  |-  ( (
ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  ->  A  e.  ( ZZ>= `  2 )
)
12 jm2.27a6 . . . . . 6  |-  ( ph  ->  F  e.  NN0 )
1312adantr 481 . . . . 5  |-  ( (
ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  ->  F  e.  NN0 )
14 jm2.27a5 . . . . . . 7  |-  ( ph  ->  E  e.  NN0 )
1514nn0zd 11480 . . . . . 6  |-  ( ph  ->  E  e.  ZZ )
1615adantr 481 . . . . 5  |-  ( (
ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  ->  E  e.  ZZ )
17 rmxycomplete 37482 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  F  e.  NN0  /\  E  e.  ZZ )  ->  (
( ( F ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( E ^ 2 ) ) )  =  1  <->  E. q  e.  ZZ  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )
1811, 13, 16, 17syl3anc 1326 . . . 4  |-  ( (
ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  ->  ( (
( F ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( E ^
2 ) ) )  =  1  <->  E. q  e.  ZZ  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )
1910, 18mpbid 222 . . 3  |-  ( (
ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  ->  E. q  e.  ZZ  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) )
20 jm2.27a14 . . . . . 6  |-  ( ph  ->  ( ( I ^
2 )  -  (
( ( G ^
2 )  -  1 )  x.  ( H ^ 2 ) ) )  =  1 )
2120ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  ( D  =  ( A Xrm 
p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  -> 
( ( I ^
2 )  -  (
( ( G ^
2 )  -  1 )  x.  ( H ^ 2 ) ) )  =  1 )
22 jm2.27a13 . . . . . . 7  |-  ( ph  ->  G  e.  ( ZZ>= ` 
2 ) )
2322ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  ( D  =  ( A Xrm 
p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  ->  G  e.  ( ZZ>= ` 
2 ) )
24 jm2.27a9 . . . . . . 7  |-  ( ph  ->  I  e.  NN0 )
2524ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  ( D  =  ( A Xrm 
p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  ->  I  e.  NN0 )
26 jm2.27a8 . . . . . . . 8  |-  ( ph  ->  H  e.  NN0 )
2726nn0zd 11480 . . . . . . 7  |-  ( ph  ->  H  e.  ZZ )
2827ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  ( D  =  ( A Xrm 
p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  ->  H  e.  ZZ )
29 rmxycomplete 37482 . . . . . 6  |-  ( ( G  e.  ( ZZ>= ` 
2 )  /\  I  e.  NN0  /\  H  e.  ZZ )  ->  (
( ( I ^
2 )  -  (
( ( G ^
2 )  -  1 )  x.  ( H ^ 2 ) ) )  =  1  <->  E. r  e.  ZZ  (
I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )
3023, 25, 28, 29syl3anc 1326 . . . . 5  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  ( D  =  ( A Xrm 
p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  -> 
( ( ( I ^ 2 )  -  ( ( ( G ^ 2 )  - 
1 )  x.  ( H ^ 2 ) ) )  =  1  <->  E. r  e.  ZZ  (
I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )
3121, 30mpbid 222 . . . 4  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  ( D  =  ( A Xrm 
p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  ->  E. r  e.  ZZ  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) )
322ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
33 jm2.27a2 . . . . . 6  |-  ( ph  ->  B  e.  NN )
3433ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  B  e.  NN )
354ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  C  e.  NN )
363ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  D  e.  NN0 )
3714ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  E  e.  NN0 )
3812ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  F  e.  NN0 )
39 jm2.27a7 . . . . . 6  |-  ( ph  ->  G  e.  NN0 )
4039ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  G  e.  NN0 )
4126ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  H  e.  NN0 )
4224ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  I  e.  NN0 )
43 jm2.27a10 . . . . . 6  |-  ( ph  ->  J  e.  NN0 )
4443ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  J  e.  NN0 )
451ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  -> 
( ( D ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( C ^ 2 ) ) )  =  1 )
469ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  -> 
( ( F ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( E ^ 2 ) ) )  =  1 )
4722ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  G  e.  ( ZZ>= ` 
2 ) )
4820ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  -> 
( ( I ^
2 )  -  (
( ( G ^
2 )  -  1 )  x.  ( H ^ 2 ) ) )  =  1 )
49 jm2.27a15 . . . . . 6  |-  ( ph  ->  E  =  ( ( J  +  1 )  x.  ( 2  x.  ( C ^ 2 ) ) ) )
5049ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  E  =  ( ( J  +  1 )  x.  ( 2  x.  ( C ^ 2 ) ) ) )
51 jm2.27a16 . . . . . 6  |-  ( ph  ->  F  ||  ( G  -  A ) )
5251ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  F  ||  ( G  -  A ) )
53 jm2.27a17 . . . . . 6  |-  ( ph  ->  ( 2  x.  C
)  ||  ( G  -  1 ) )
5453ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  -> 
( 2  x.  C
)  ||  ( G  -  1 ) )
55 jm2.27a18 . . . . . 6  |-  ( ph  ->  F  ||  ( H  -  C ) )
5655ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  F  ||  ( H  -  C ) )
57 jm2.27a19 . . . . . 6  |-  ( ph  ->  ( 2  x.  C
)  ||  ( H  -  B ) )
5857ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  -> 
( 2  x.  C
)  ||  ( H  -  B ) )
59 jm2.27a20 . . . . . 6  |-  ( ph  ->  B  <_  C )
6059ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  B  <_  C )
61 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  ->  p  e.  ZZ )
6261ad2antrr 762 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  p  e.  ZZ )
63 simprrl 804 . . . . . 6  |-  ( (
ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  ->  D  =  ( A Xrm  p ) )
6463ad2antrr 762 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  D  =  ( A Xrm  p
) )
65 simprrr 805 . . . . . 6  |-  ( (
ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  ->  C  =  ( A Yrm  p ) )
6665ad2antrr 762 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  C  =  ( A Yrm  p
) )
67 simplrl 800 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  -> 
q  e.  ZZ )
68 simprl 794 . . . . . 6  |-  ( ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) )  ->  F  =  ( A Xrm  q ) )
6968ad2antlr 763 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  F  =  ( A Xrm  q ) )
70 simprr 796 . . . . . 6  |-  ( ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) )  ->  E  =  ( A Yrm  q ) )
7170ad2antlr 763 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  E  =  ( A Yrm  q ) )
72 simprl 794 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  -> 
r  e.  ZZ )
73 simprrl 804 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  I  =  ( G Xrm  r ) )
74 simprrr 805 . . . . 5  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  H  =  ( G Yrm  r ) )
7532, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 72, 73, 74jm2.27a 37572 . . . 4  |-  ( ( ( ( ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  /\  ( r  e.  ZZ  /\  ( I  =  ( G Xrm  r )  /\  H  =  ( G Yrm  r ) ) ) )  ->  C  =  ( A Yrm  B
) )
7631, 75rexlimddv 3035 . . 3  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  ( D  =  ( A Xrm 
p )  /\  C  =  ( A Yrm  p ) ) ) )  /\  ( q  e.  ZZ  /\  ( F  =  ( A Xrm  q )  /\  E  =  ( A Yrm  q ) ) ) )  ->  C  =  ( A Yrm  B
) )
7719, 76rexlimddv 3035 . 2  |-  ( (
ph  /\  ( p  e.  ZZ  /\  ( D  =  ( A Xrm  p )  /\  C  =  ( A Yrm  p ) ) ) )  ->  C  =  ( A Yrm  B ) )
788, 77rexlimddv 3035 1  |-  ( ph  ->  C  =  ( A Yrm  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ^cexp 12860    || cdvds 14983   Xrm crmx 37464   Yrm crmy 37465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-numer 15443  df-denom 15444  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-squarenn 37405  df-pell1qr 37406  df-pell14qr 37407  df-pell1234qr 37408  df-pellfund 37409  df-rmx 37466  df-rmy 37467
This theorem is referenced by:  jm2.27  37575
  Copyright terms: Public domain W3C validator