MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqr Structured version   Visualization version   Unicode version

Theorem lgsqr 25076
Description: The Legendre symbol for odd primes is  1 iff the number is not a multiple of the prime (in which case it is  0, see lgsne0 25060) and the number is a quadratic residue  mod  P (it is  -u 1 for nonresidues by the process of elimination from lgsabs1 25061). Given our definition of the Legendre symbol, this theorem is equivalent to Euler's criterion. (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
lgsqr  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  <->  ( -.  P  ||  A  /\  E. x  e.  ZZ  P  ||  ( ( x ^
2 )  -  A
) ) ) )
Distinct variable groups:    x, A    x, P

Proof of Theorem lgsqr
StepHypRef Expression
1 eldifi 3732 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
21adantl 482 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  Prime )
3 prmz 15389 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  ZZ )
42, 3syl 17 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  ZZ )
5 simpl 473 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  A  e.  ZZ )
6 gcdcom 15235 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  A  e.  ZZ )  ->  ( P  gcd  A
)  =  ( A  gcd  P ) )
74, 5, 6syl2anc 693 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  gcd  A )  =  ( A  gcd  P ) )
87eqeq1d 2624 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( P  gcd  A )  =  1  <->  ( A  gcd  P )  =  1 ) )
9 coprm 15423 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
102, 5, 9syl2anc 693 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
11 lgsne0 25060 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( A  /L P )  =/=  0  <->  ( A  gcd  P )  =  1 ) )
125, 4, 11syl2anc 693 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =/=  0  <->  ( A  gcd  P )  =  1 ) )
138, 10, 123bitr4d 300 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( -.  P  ||  A  <->  ( A  /L P )  =/=  0 ) )
1413necon4bbid 2835 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  ||  A  <->  ( A  /L P )  =  0 ) )
15 0ne1 11088 . . . . . 6  |-  0  =/=  1
16 neeq1 2856 . . . . . 6  |-  ( ( A  /L P )  =  0  -> 
( ( A  /L P )  =/=  1  <->  0  =/=  1
) )
1715, 16mpbiri 248 . . . . 5  |-  ( ( A  /L P )  =  0  -> 
( A  /L
P )  =/=  1
)
1814, 17syl6bi 243 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  ||  A  ->  ( A  /L P )  =/=  1 ) )
1918necon2bd 2810 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  ->  -.  P  ||  A ) )
20 lgsqrlem5 25075 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  ( A  /L P )  =  1 )  ->  E. x  e.  ZZ  P  ||  (
( x ^ 2 )  -  A ) )
21203expia 1267 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  ->  E. x  e.  ZZ  P  ||  (
( x ^ 2 )  -  A ) ) )
2219, 21jcad 555 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  ->  ( -.  P  ||  A  /\  E. x  e.  ZZ  P  ||  ( ( x ^
2 )  -  A
) ) ) )
23 simprl 794 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  x  e.  ZZ )
2423zred 11482 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  x  e.  RR )
25 absresq 14042 . . . . . . 7  |-  ( x  e.  RR  ->  (
( abs `  x
) ^ 2 )  =  ( x ^
2 ) )
2624, 25syl 17 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( abs `  x
) ^ 2 )  =  ( x ^
2 ) )
2726oveq1d 6665 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( abs `  x ) ^ 2 )  /L P )  =  ( ( x ^ 2 )  /L P ) )
28 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  P  ||  A )
291ad3antlr 767 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  e.  Prime )
3029, 3syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  e.  ZZ )
31 zsqcl 12934 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  ZZ )
3223, 31syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( x ^ 2 )  e.  ZZ )
33 simplll 798 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  A  e.  ZZ )
34 simprr 796 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  ||  ( ( x ^ 2 )  -  A ) )
35 dvdssub2 15023 . . . . . . . . . . . 12  |-  ( ( ( P  e.  ZZ  /\  ( x ^ 2 )  e.  ZZ  /\  A  e.  ZZ )  /\  P  ||  ( ( x ^ 2 )  -  A ) )  ->  ( P  ||  ( x ^ 2 )  <->  P  ||  A ) )
3630, 32, 33, 34, 35syl31anc 1329 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( P  ||  (
x ^ 2 )  <-> 
P  ||  A )
)
3728, 36mtbird 315 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  P  ||  ( x ^ 2 ) )
38 2nn 11185 . . . . . . . . . . . 12  |-  2  e.  NN
3938a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
2  e.  NN )
40 prmdvdsexp 15427 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  x  e.  ZZ  /\  2  e.  NN )  ->  ( P  ||  ( x ^
2 )  <->  P  ||  x
) )
4129, 23, 39, 40syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( P  ||  (
x ^ 2 )  <-> 
P  ||  x )
)
4237, 41mtbid 314 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  P  ||  x )
43 dvds0 14997 . . . . . . . . . . . 12  |-  ( P  e.  ZZ  ->  P  ||  0 )
4430, 43syl 17 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  ||  0 )
45 breq2 4657 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( P  ||  x  <->  P  ||  0
) )
4644, 45syl5ibrcom 237 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( x  =  0  ->  P  ||  x
) )
4746necon3bd 2808 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( -.  P  ||  x  ->  x  =/=  0
) )
4842, 47mpd 15 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  x  =/=  0 )
49 nnabscl 14065 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  x  =/=  0 )  -> 
( abs `  x
)  e.  NN )
5023, 48, 49syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( abs `  x
)  e.  NN )
5150nnzd 11481 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( abs `  x
)  e.  ZZ )
5250nnne0d 11065 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( abs `  x
)  =/=  0 )
53 gcdcom 15235 . . . . . . . 8  |-  ( ( ( abs `  x
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( abs `  x
)  gcd  P )  =  ( P  gcd  ( abs `  x ) ) )
5451, 30, 53syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( abs `  x
)  gcd  P )  =  ( P  gcd  ( abs `  x ) ) )
55 dvdsabsb 15001 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  x  e.  ZZ )  ->  ( P  ||  x  <->  P 
||  ( abs `  x
) ) )
5630, 23, 55syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( P  ||  x  <->  P 
||  ( abs `  x
) ) )
5742, 56mtbid 314 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  P  ||  ( abs `  x ) )
58 coprm 15423 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( abs `  x )  e.  ZZ )  ->  ( -.  P  ||  ( abs `  x )  <->  ( P  gcd  ( abs `  x
) )  =  1 ) )
5929, 51, 58syl2anc 693 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( -.  P  ||  ( abs `  x )  <-> 
( P  gcd  ( abs `  x ) )  =  1 ) )
6057, 59mpbid 222 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( P  gcd  ( abs `  x ) )  =  1 )
6154, 60eqtrd 2656 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( abs `  x
)  gcd  P )  =  1 )
62 lgssq 25062 . . . . . 6  |-  ( ( ( ( abs `  x
)  e.  ZZ  /\  ( abs `  x )  =/=  0 )  /\  P  e.  ZZ  /\  (
( abs `  x
)  gcd  P )  =  1 )  -> 
( ( ( abs `  x ) ^ 2 )  /L P )  =  1 )
6351, 52, 30, 61, 62syl211anc 1332 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( abs `  x ) ^ 2 )  /L P )  =  1 )
64 prmnn 15388 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
6529, 64syl 17 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  e.  NN )
66 moddvds 14991 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  ( x ^ 2 )  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( ( x ^ 2 )  mod 
P )  =  ( A  mod  P )  <-> 
P  ||  ( (
x ^ 2 )  -  A ) ) )
6765, 32, 33, 66syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( x ^ 2 )  mod 
P )  =  ( A  mod  P )  <-> 
P  ||  ( (
x ^ 2 )  -  A ) ) )
6834, 67mpbird 247 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( x ^
2 )  mod  P
)  =  ( A  mod  P ) )
6968oveq1d 6665 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( x ^ 2 )  mod 
P )  /L
P )  =  ( ( A  mod  P
)  /L P ) )
70 eldifsni 4320 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
7170ad3antlr 767 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  =/=  2 )
7271necomd 2849 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
2  =/=  P )
73 2z 11409 . . . . . . . . . 10  |-  2  e.  ZZ
74 uzid 11702 . . . . . . . . . 10  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
7573, 74ax-mp 5 . . . . . . . . 9  |-  2  e.  ( ZZ>= `  2 )
76 dvdsprm 15415 . . . . . . . . . 10  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  P  e.  Prime )  ->  (
2  ||  P  <->  2  =  P ) )
7776necon3bbid 2831 . . . . . . . . 9  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  P  e.  Prime )  ->  ( -.  2  ||  P  <->  2  =/=  P ) )
7875, 29, 77sylancr 695 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( -.  2  ||  P 
<->  2  =/=  P ) )
7972, 78mpbird 247 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  2  ||  P )
80 lgsmod 25048 . . . . . . 7  |-  ( ( ( x ^ 2 )  e.  ZZ  /\  P  e.  NN  /\  -.  2  ||  P )  -> 
( ( ( x ^ 2 )  mod 
P )  /L
P )  =  ( ( x ^ 2 )  /L P ) )
8132, 65, 79, 80syl3anc 1326 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( x ^ 2 )  mod 
P )  /L
P )  =  ( ( x ^ 2 )  /L P ) )
82 lgsmod 25048 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  NN  /\  -.  2  ||  P )  -> 
( ( A  mod  P )  /L P )  =  ( A  /L P ) )
8333, 65, 79, 82syl3anc 1326 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( A  mod  P )  /L P )  =  ( A  /L P ) )
8469, 81, 833eqtr3d 2664 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( x ^
2 )  /L
P )  =  ( A  /L P ) )
8527, 63, 843eqtr3rd 2665 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( A  /L
P )  =  1 )
8685rexlimdvaa 3032 . . 3  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  ->  ( E. x  e.  ZZ  P  ||  ( ( x ^ 2 )  -  A )  ->  ( A  /L P )  =  1 ) )
8786expimpd 629 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( -.  P  ||  A  /\  E. x  e.  ZZ  P  ||  ( ( x ^
2 )  -  A
) )  ->  ( A  /L P )  =  1 ) )
8822, 87impbid 202 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  <->  ( -.  P  ||  A  /\  E. x  e.  ZZ  P  ||  ( ( x ^
2 )  -  A
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    - cmin 10266   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687    mod cmo 12668   ^cexp 12860   abscabs 13974    || cdvds 14983    gcd cgcd 15216   Primecprime 15385    /Lclgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-imas 16168  df-qus 16169  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-nzr 19258  df-rlreg 19283  df-domn 19284  df-idom 19285  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-evl 19507  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-evl1 19681  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-mdeg 23815  df-deg1 23816  df-mon1 23890  df-uc1p 23891  df-q1p 23892  df-r1p 23893  df-lgs 25020
This theorem is referenced by:  lgsqrmod  25077  2sqlem11  25154  2sqblem  25156
  Copyright terms: Public domain W3C validator