Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem4 Structured version   Visualization version   Unicode version

Theorem stirlinglem4 40294
Description: Algebraic manipulation of  ( ( B n ) - ( B  ( n  +  1 ) ) ). It will be used in other theorems to show that  B is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem4.1  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
stirlinglem4.2  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
stirlinglem4.3  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
Assertion
Ref Expression
stirlinglem4  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  =  ( J `  N ) )
Distinct variable group:    n, N
Allowed substitution hints:    A( n)    B( n)    J( n)

Proof of Theorem stirlinglem4
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnre 11027 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
2 nnnn0 11299 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  NN0 )
32nn0ge0d 11354 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <_  N )
41, 3ge0p1rpd 11902 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR+ )
5 nnrp 11842 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR+ )
64, 5rpdivcld 11889 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  RR+ )
76rpsqrtcld 14150 . . . . 5  |-  ( N  e.  NN  ->  ( sqr `  ( ( N  +  1 )  /  N ) )  e.  RR+ )
8 nnz 11399 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
96, 8rpexpcld 13032 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  N
) ^ N )  e.  RR+ )
107, 9rpmulcld 11888 . . . 4  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  e.  RR+ )
11 epr 14936 . . . . 5  |-  _e  e.  RR+
1211a1i 11 . . . 4  |-  ( N  e.  NN  ->  _e  e.  RR+ )
1310, 12relogdivd 24372 . . 3  |-  ( N  e.  NN  ->  ( log `  ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) )  =  ( ( log `  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) ) )  -  ( log `  _e ) ) )
147, 9relogmuld 24371 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) ) )  =  ( ( log `  ( sqr `  ( ( N  +  1 )  /  N ) ) )  +  ( log `  (
( ( N  + 
1 )  /  N
) ^ N ) ) ) )
15 logsqrt 24450 . . . . . . . 8  |-  ( ( ( N  +  1 )  /  N )  e.  RR+  ->  ( log `  ( sqr `  (
( N  +  1 )  /  N ) ) )  =  ( ( log `  (
( N  +  1 )  /  N ) )  /  2 ) )
166, 15syl 17 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( sqr `  (
( N  +  1 )  /  N ) ) )  =  ( ( log `  (
( N  +  1 )  /  N ) )  /  2 ) )
17 relogexp 24342 . . . . . . . 8  |-  ( ( ( ( N  + 
1 )  /  N
)  e.  RR+  /\  N  e.  ZZ )  ->  ( log `  ( ( ( N  +  1 )  /  N ) ^ N ) )  =  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
186, 8, 17syl2anc 693 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( ( ( N  +  1 )  /  N ) ^ N ) )  =  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
1916, 18oveq12d 6668 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  ( sqr `  ( ( N  +  1 )  /  N ) ) )  +  ( log `  (
( ( N  + 
1 )  /  N
) ^ N ) ) )  =  ( ( ( log `  (
( N  +  1 )  /  N ) )  /  2 )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) ) )
2014, 19eqtrd 2656 . . . . 5  |-  ( N  e.  NN  ->  ( log `  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) ) )  =  ( ( ( log `  (
( N  +  1 )  /  N ) )  /  2 )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) ) )
21 peano2nn 11032 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
2221nncnd 11036 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
23 nncn 11028 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  CC )
24 nnne0 11053 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  =/=  0 )
2522, 23, 24divcld 10801 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  CC )
2621nnne0d 11065 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  =/=  0 )
2722, 23, 26, 24divne0d 10817 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  =/=  0 )
2825, 27logcld 24317 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  /  N ) )  e.  CC )
29 2cnd 11093 . . . . . . 7  |-  ( N  e.  NN  ->  2  e.  CC )
30 2rp 11837 . . . . . . . . 9  |-  2  e.  RR+
3130a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  RR+ )
3231rpne0d 11877 . . . . . . 7  |-  ( N  e.  NN  ->  2  =/=  0 )
3328, 29, 32divrec2d 10805 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  (
( N  +  1 )  /  N ) )  /  2 )  =  ( ( 1  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) ) )
3433oveq1d 6665 . . . . 5  |-  ( N  e.  NN  ->  (
( ( log `  (
( N  +  1 )  /  N ) )  /  2 )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )  =  ( ( ( 1  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) ) )
35 1cnd 10056 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  CC )
3635halfcld 11277 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  /  2 )  e.  CC )
3736, 23, 28adddird 10065 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( 1  / 
2 )  +  N
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  =  ( ( ( 1  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  +  ( N  x.  ( log `  ( ( N  + 
1 )  /  N
) ) ) ) )
3823, 29, 32divcan4d 10807 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  x.  2 )  /  2 )  =  N )
3923, 29mulcomd 10061 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  x.  2 )  =  ( 2  x.  N ) )
4039oveq1d 6665 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  x.  2 )  /  2 )  =  ( ( 2  x.  N )  / 
2 ) )
4138, 40eqtr3d 2658 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  =  ( ( 2  x.  N )  / 
2 ) )
4241oveq2d 6666 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  /  2
)  +  N )  =  ( ( 1  /  2 )  +  ( ( 2  x.  N )  /  2
) ) )
4329, 23mulcld 10060 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
4435, 43, 29, 32divdird 10839 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  =  ( ( 1  /  2 )  +  ( ( 2  x.  N )  /  2
) ) )
4542, 44eqtr4d 2659 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 1  /  2
)  +  N )  =  ( ( 1  +  ( 2  x.  N ) )  / 
2 ) )
4645oveq1d 6665 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( 1  / 
2 )  +  N
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
4737, 46eqtr3d 2658 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 1  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )  =  ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) ) )
4820, 34, 473eqtrd 2660 . . . 4  |-  ( N  e.  NN  ->  ( log `  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) ) )  =  ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) ) )
49 loge 24333 . . . . 5  |-  ( log `  _e )  =  1
5049a1i 11 . . . 4  |-  ( N  e.  NN  ->  ( log `  _e )  =  1 )
5148, 50oveq12d 6668 . . 3  |-  ( N  e.  NN  ->  (
( log `  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) ) )  -  ( log `  _e ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
5213, 51eqtrd 2656 . 2  |-  ( N  e.  NN  ->  ( log `  ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 ) )
53 stirlinglem4.1 . . . . . . 7  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
5453stirlinglem2 40292 . . . . . 6  |-  ( N  e.  NN  ->  ( A `  N )  e.  RR+ )
5554relogcld 24369 . . . . 5  |-  ( N  e.  NN  ->  ( log `  ( A `  N ) )  e.  RR )
56 nfcv 2764 . . . . . 6  |-  F/_ n N
57 nfcv 2764 . . . . . . 7  |-  F/_ n log
58 nfmpt1 4747 . . . . . . . . 9  |-  F/_ n
( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
5953, 58nfcxfr 2762 . . . . . . . 8  |-  F/_ n A
6059, 56nffv 6198 . . . . . . 7  |-  F/_ n
( A `  N
)
6157, 60nffv 6198 . . . . . 6  |-  F/_ n
( log `  ( A `  N )
)
62 fveq2 6191 . . . . . . 7  |-  ( n  =  N  ->  ( A `  n )  =  ( A `  N ) )
6362fveq2d 6195 . . . . . 6  |-  ( n  =  N  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  N )
) )
64 stirlinglem4.2 . . . . . 6  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
6556, 61, 63, 64fvmptf 6301 . . . . 5  |-  ( ( N  e.  NN  /\  ( log `  ( A `
 N ) )  e.  RR )  -> 
( B `  N
)  =  ( log `  ( A `  N
) ) )
6655, 65mpdan 702 . . . 4  |-  ( N  e.  NN  ->  ( B `  N )  =  ( log `  ( A `  N )
) )
67 nfcv 2764 . . . . . . . 8  |-  F/_ k
( log `  ( A `  n )
)
68 nfcv 2764 . . . . . . . . . 10  |-  F/_ n
k
6959, 68nffv 6198 . . . . . . . . 9  |-  F/_ n
( A `  k
)
7057, 69nffv 6198 . . . . . . . 8  |-  F/_ n
( log `  ( A `  k )
)
71 fveq2 6191 . . . . . . . . 9  |-  ( n  =  k  ->  ( A `  n )  =  ( A `  k ) )
7271fveq2d 6195 . . . . . . . 8  |-  ( n  =  k  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  k )
) )
7367, 70, 72cbvmpt 4749 . . . . . . 7  |-  ( n  e.  NN  |->  ( log `  ( A `  n
) ) )  =  ( k  e.  NN  |->  ( log `  ( A `
 k ) ) )
7464, 73eqtri 2644 . . . . . 6  |-  B  =  ( k  e.  NN  |->  ( log `  ( A `
 k ) ) )
7574a1i 11 . . . . 5  |-  ( N  e.  NN  ->  B  =  ( k  e.  NN  |->  ( log `  ( A `  k )
) ) )
76 simpr 477 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  k  =  ( N  +  1 ) )
7776fveq2d 6195 . . . . . 6  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( A `  k )  =  ( A `  ( N  +  1 ) ) )
7877fveq2d 6195 . . . . 5  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( log `  ( A `  k )
)  =  ( log `  ( A `  ( N  +  1 ) ) ) )
7953stirlinglem2 40292 . . . . . . 7  |-  ( ( N  +  1 )  e.  NN  ->  ( A `  ( N  +  1 ) )  e.  RR+ )
8021, 79syl 17 . . . . . 6  |-  ( N  e.  NN  ->  ( A `  ( N  +  1 ) )  e.  RR+ )
8180relogcld 24369 . . . . 5  |-  ( N  e.  NN  ->  ( log `  ( A `  ( N  +  1
) ) )  e.  RR )
8275, 78, 21, 81fvmptd 6288 . . . 4  |-  ( N  e.  NN  ->  ( B `  ( N  +  1 ) )  =  ( log `  ( A `  ( N  +  1 ) ) ) )
8366, 82oveq12d 6668 . . 3  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  =  ( ( log `  ( A `  N
) )  -  ( log `  ( A `  ( N  +  1
) ) ) ) )
8454, 80relogdivd 24372 . . 3  |-  ( N  e.  NN  ->  ( log `  ( ( A `
 N )  / 
( A `  ( N  +  1 ) ) ) )  =  ( ( log `  ( A `  N )
)  -  ( log `  ( A `  ( N  +  1 ) ) ) ) )
85 faccl 13070 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
86 nnrp 11842 . . . . . . . . 9  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  RR+ )
872, 85, 863syl 18 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  N )  e.  RR+ )
8831, 5rpmulcld 11888 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR+ )
8988rpsqrtcld 14150 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  N ) )  e.  RR+ )
905, 12rpdivcld 11889 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  /  _e )  e.  RR+ )
9190, 8rpexpcld 13032 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  /  _e ) ^ N )  e.  RR+ )
9289, 91rpmulcld 11888 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  e.  RR+ )
9387, 92rpdivcld 11889 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )
9453a1i 11 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) ) ) )
95 simpr 477 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  n  =  N )
9695fveq2d 6195 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( ! `  n )  =  ( ! `  N ) )
9795oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( 2  x.  n )  =  ( 2  x.  N
) )
9897fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( sqr `  ( 2  x.  n
) )  =  ( sqr `  ( 2  x.  N ) ) )
9995oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( n  /  _e )  =  ( N  /  _e ) )
10099, 95oveq12d 6668 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( (
n  /  _e ) ^ n )  =  ( ( N  /  _e ) ^ N ) )
10198, 100oveq12d 6668 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) )  =  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )
10296, 101oveq12d 6668 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( ( ! `  n )  /  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) )  =  ( ( ! `  N )  /  ( ( sqr `  ( 2  x.  N
) )  x.  (
( N  /  _e ) ^ N ) ) ) )
103 simpl 473 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  e.  NN )
10487rpcnd 11874 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( ! `  N )  e.  CC )
105104adantr 481 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ! `  N
)  e.  CC )
106 2cnd 11093 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  2  e.  CC )
107103nncnd 11036 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  e.  CC )
108106, 107mulcld 10060 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( 2  x.  N
)  e.  CC )
109108sqrtcld 14176 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( sqr `  (
2  x.  N ) )  e.  CC )
110 ere 14819 . . . . . . . . . . . . . 14  |-  _e  e.  RR
111110recni 10052 . . . . . . . . . . . . 13  |-  _e  e.  CC
112111a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  _e  e.  CC )
113 0re 10040 . . . . . . . . . . . . . 14  |-  0  e.  RR
114 epos 14935 . . . . . . . . . . . . . 14  |-  0  <  _e
115113, 114gtneii 10149 . . . . . . . . . . . . 13  |-  _e  =/=  0
116115a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  _e  =/=  0 )
117107, 112, 116divcld 10801 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( N  /  _e )  e.  CC )
118103nnnn0d 11351 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  e.  NN0 )
119117, 118expcld 13008 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( N  /  _e ) ^ N )  e.  CC )
120109, 119mulcld 10060 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  e.  CC )
12189rpne0d 11877 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  N ) )  =/=  0 )
122121adantr 481 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( sqr `  (
2  x.  N ) )  =/=  0 )
123103nnne0d 11065 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  =/=  0 )
124107, 112, 123, 116divne0d 10817 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( N  /  _e )  =/=  0 )
125103nnzd 11481 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  e.  ZZ )
126117, 124, 125expne0d 13014 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( N  /  _e ) ^ N )  =/=  0 )
127109, 119, 122, 126mulne0d 10679 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  =/=  0 )
128105, 120, 127divcld 10801 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  CC )
12994, 102, 103, 128fvmptd 6288 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( A `  N
)  =  ( ( ! `  N )  /  ( ( sqr `  ( 2  x.  N
) )  x.  (
( N  /  _e ) ^ N ) ) ) )
13093, 129mpdan 702 . . . . . 6  |-  ( N  e.  NN  ->  ( A `  N )  =  ( ( ! `
 N )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
131 nfcv 2764 . . . . . . . . . 10  |-  F/_ k
( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) )
132 nfcv 2764 . . . . . . . . . 10  |-  F/_ n
( ( ! `  k )  /  (
( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) )
133 fveq2 6191 . . . . . . . . . . 11  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
134 oveq2 6658 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
2  x.  n )  =  ( 2  x.  k ) )
135134fveq2d 6195 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( sqr `  ( 2  x.  n ) )  =  ( sqr `  (
2  x.  k ) ) )
136 oveq1 6657 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
n  /  _e )  =  ( k  /  _e ) )
137 id 22 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  n  =  k )
138136, 137oveq12d 6668 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( n  /  _e ) ^ n )  =  ( ( k  /  _e ) ^ k ) )
139135, 138oveq12d 6668 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) )  =  ( ( sqr `  ( 2  x.  k
) )  x.  (
( k  /  _e ) ^ k ) ) )
140133, 139oveq12d 6668 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) )  =  ( ( ! `
 k )  / 
( ( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) ) )
141131, 132, 140cbvmpt 4749 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( ! `  n )  /  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) ) )  =  ( k  e.  NN  |->  ( ( ! `  k
)  /  ( ( sqr `  ( 2  x.  k ) )  x.  ( ( k  /  _e ) ^
k ) ) ) )
14253, 141eqtri 2644 . . . . . . . 8  |-  A  =  ( k  e.  NN  |->  ( ( ! `  k )  /  (
( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) ) )
143142a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  A  =  ( k  e.  NN  |->  ( ( ! `
 k )  / 
( ( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) ) ) )
14476fveq2d 6195 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( ! `  k )  =  ( ! `  ( N  +  1 ) ) )
14576oveq2d 6666 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( 2  x.  k )  =  ( 2  x.  ( N  +  1 ) ) )
146145fveq2d 6195 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( sqr `  (
2  x.  k ) )  =  ( sqr `  ( 2  x.  ( N  +  1 ) ) ) )
14776oveq1d 6665 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( k  /  _e )  =  (
( N  +  1 )  /  _e ) )
148147, 76oveq12d 6668 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( ( k  /  _e ) ^
k )  =  ( ( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )
149146, 148oveq12d 6668 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( ( sqr `  ( 2  x.  k
) )  x.  (
( k  /  _e ) ^ k ) )  =  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) )
150144, 149oveq12d 6668 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( ( ! `
 k )  / 
( ( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) )  =  ( ( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )
15121nnnn0d 11351 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN0 )
152 faccl 13070 . . . . . . . . 9  |-  ( ( N  +  1 )  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  e.  NN )
153 nnrp 11842 . . . . . . . . 9  |-  ( ( ! `  ( N  +  1 ) )  e.  NN  ->  ( ! `  ( N  +  1 ) )  e.  RR+ )
154151, 152, 1533syl 18 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  e.  RR+ )
15531, 4rpmulcld 11888 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
2  x.  ( N  +  1 ) )  e.  RR+ )
156155rpsqrtcld 14150 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  ( N  +  1 ) ) )  e.  RR+ )
1574, 12rpdivcld 11889 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  _e )  e.  RR+ )
1588peano2zd 11485 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ZZ )
159157, 158rpexpcld 13032 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  e.  RR+ )
160156, 159rpmulcld 11888 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  e.  RR+ )
161154, 160rpdivcld 11889 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  e.  RR+ )
162143, 150, 21, 161fvmptd 6288 . . . . . 6  |-  ( N  e.  NN  ->  ( A `  ( N  +  1 ) )  =  ( ( ! `
 ( N  + 
1 ) )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )
163130, 162oveq12d 6668 . . . . 5  |-  ( N  e.  NN  ->  (
( A `  N
)  /  ( A `
 ( N  + 
1 ) ) )  =  ( ( ( ! `  N )  /  ( ( sqr `  ( 2  x.  N
) )  x.  (
( N  /  _e ) ^ N ) ) )  /  ( ( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )
164 facp1 13065 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  =  ( ( ! `  N )  x.  ( N  +  1 ) ) )
1652, 164syl 17 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( N  +  1 ) ) )
166165oveq1d 6665 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  =  ( ( ( ! `  N )  x.  ( N  + 
1 ) )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )
167160rpcnd 11874 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  e.  CC )
168160rpne0d 11877 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  =/=  0 )
169104, 22, 167, 168divassd 10836 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 )  /  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )
170166, 169eqtrd 2656 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 )  /  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )
171170oveq2d 6666 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  /  ( ( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) ) )
17292rpcnd 11874 . . . . . . 7  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  e.  CC )
17322, 167, 168divcld 10801 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  e.  CC )
174104, 173mulcld 10060 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  e.  CC )
17592rpne0d 11877 . . . . . . 7  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  =/=  0 )
17687rpne0d 11877 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  N )  =/=  0 )
17722, 167, 26, 168divne0d 10817 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  =/=  0 )
178104, 173, 176, 177mulne0d 10679 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =/=  0
)
179104, 172, 174, 175, 178divdiv32d 10826 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )  =  ( ( ( ! `
 N )  / 
( ( ! `  N )  x.  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) ) )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
180104, 104, 173, 176, 177divdiv1d 10832 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  ( ! `  N )
)  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( ( ! `  N
)  /  ( ( ! `  N )  x.  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) ) )
181180eqcomd 2628 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ( ! `  N )  x.  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )  =  ( ( ( ! `
 N )  / 
( ! `  N
) )  /  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) ) )
182181oveq1d 6665 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( ! `  N
)  x.  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( ! `  N )  /  ( ! `  N )
)  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
183104, 176dividd 10799 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ! `
 N ) )  =  1 )
184183oveq1d 6665 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  ( ! `  N )
)  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( 1  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )
185184oveq1d 6665 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( ! `
 N )  / 
( ! `  N
) )  /  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) )  /  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( 1  /  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
18622, 167, 26, 168recdivd 10818 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( ( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) ) )
187186oveq1d 6665 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  /  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) )  /  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
188167, 22, 26divcld 10801 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  e.  CC )
18989rpcnd 11874 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  N ) )  e.  CC )
19091rpcnd 11874 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  /  _e ) ^ N )  e.  CC )
19191rpne0d 11877 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  /  _e ) ^ N )  =/=  0 )
192188, 189, 190, 121, 191divdiv1d 10832 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  / 
( N  +  1 ) )  /  ( sqr `  ( 2  x.  N ) ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  / 
( N  +  1 ) )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
193167, 22, 189, 26, 121divdiv32d 10826 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( sqr `  (
2  x.  N ) ) )  =  ( ( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( sqr `  (
2  x.  N ) ) )  /  ( N  +  1 ) ) )
194156rpcnd 11874 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  ( N  +  1 ) ) )  e.  CC )
195159rpcnd 11874 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  e.  CC )
196194, 195, 189, 121div23d 10838 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( sqr `  (
2  x.  N ) ) )  =  ( ( ( sqr `  (
2  x.  ( N  +  1 ) ) )  /  ( sqr `  ( 2  x.  N
) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  +  1 ) ) ) )
19731rpred 11872 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  2  e.  RR )
19831rpge0d 11876 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  2 )
19921nnred 11035 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
200151nn0ge0d 11354 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  ( N  +  1 ) )
201197, 198, 199, 200sqrtmuld 14163 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  ( N  +  1 ) ) )  =  ( ( sqr `  2
)  x.  ( sqr `  ( N  +  1 ) ) ) )
202197, 198, 1, 3sqrtmuld 14163 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  N ) )  =  ( ( sqr `  2
)  x.  ( sqr `  N ) ) )
203201, 202oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  /  ( sqr `  ( 2  x.  N
) ) )  =  ( ( ( sqr `  2 )  x.  ( sqr `  ( N  +  1 ) ) )  /  (
( sqr `  2
)  x.  ( sqr `  N ) ) ) )
20429sqrtcld 14176 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  2 )  e.  CC )
20522sqrtcld 14176 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  ( N  + 
1 ) )  e.  CC )
20623sqrtcld 14176 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  N )  e.  CC )
20731rpsqrtcld 14150 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( sqr `  2 )  e.  RR+ )
208207rpne0d 11877 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  2 )  =/=  0 )
2095rpsqrtcld 14150 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( sqr `  N )  e.  RR+ )
210209rpne0d 11877 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  N )  =/=  0 )
211204, 204, 205, 206, 208, 210divmuldivd 10842 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( ( sqr `  2
)  /  ( sqr `  2 ) )  x.  ( ( sqr `  ( N  +  1 ) )  /  ( sqr `  N ) ) )  =  ( ( ( sqr `  2
)  x.  ( sqr `  ( N  +  1 ) ) )  / 
( ( sqr `  2
)  x.  ( sqr `  N ) ) ) )
212204, 208dividd 10799 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( sqr `  2
)  /  ( sqr `  2 ) )  =  1 )
213199, 200, 5sqrtdivd 14162 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( sqr `  ( ( N  +  1 )  /  N ) )  =  ( ( sqr `  ( N  +  1 ) )  /  ( sqr `  N ) ) )
214213eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( sqr `  ( N  +  1 ) )  /  ( sqr `  N ) )  =  ( sqr `  (
( N  +  1 )  /  N ) ) )
215212, 214oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( ( sqr `  2
)  /  ( sqr `  2 ) )  x.  ( ( sqr `  ( N  +  1 ) )  /  ( sqr `  N ) ) )  =  ( 1  x.  ( sqr `  (
( N  +  1 )  /  N ) ) ) )
216203, 211, 2153eqtr2d 2662 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  /  ( sqr `  ( 2  x.  N
) ) )  =  ( 1  x.  ( sqr `  ( ( N  +  1 )  /  N ) ) ) )
217216oveq1d 6665 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  /  ( sqr `  ( 2  x.  N
) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  +  1 ) ) )  =  ( ( 1  x.  ( sqr `  ( ( N  + 
1 )  /  N
) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  +  1 ) ) ) )
21825sqrtcld 14176 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  ( sqr `  ( ( N  +  1 )  /  N ) )  e.  CC )
219218mulid2d 10058 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
1  x.  ( sqr `  ( ( N  + 
1 )  /  N
) ) )  =  ( sqr `  (
( N  +  1 )  /  N ) ) )
220219oveq1d 6665 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 1  x.  ( sqr `  ( ( N  +  1 )  /  N ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) )
221196, 217, 2203eqtrd 2660 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( sqr `  (
2  x.  N ) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) )
222221oveq1d 6665 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( sqr `  (
2  x.  N ) ) )  /  ( N  +  1 ) )  =  ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) ) )
223193, 222eqtrd 2656 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( sqr `  (
2  x.  N ) ) )  =  ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) ) )
224223oveq1d 6665 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  / 
( N  +  1 ) )  /  ( sqr `  ( 2  x.  N ) ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  / 
( N  +  1 ) )  /  (
( N  /  _e ) ^ N ) ) )
225192, 224eqtr3d 2658 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) ) )
226218, 195mulcld 10060 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  e.  CC )
227226, 22, 190, 26, 191divdiv32d 10826 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( ( N  /  _e ) ^ N ) )  / 
( N  +  1 ) ) )
228218, 195, 190, 191divassd 10836 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) ) ) )
22912rpcnd 11874 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  _e  e.  CC )
23012rpne0d 11877 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  _e  =/=  0 )
23122, 229, 230, 151expdivd 13022 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  =  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  (
_e ^ ( N  +  1 ) ) ) )
23223, 229, 230, 2expdivd 13022 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( N  /  _e ) ^ N )  =  ( ( N ^ N )  /  (
_e ^ N ) ) )
233231, 232oveq12d 6668 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  /  _e ) ^ ( N  +  1 ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( _e ^ ( N  +  1 ) ) )  /  (
( N ^ N
)  /  ( _e
^ N ) ) ) )
234233oveq2d 6666 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( _e
^ ( N  + 
1 ) ) )  /  ( ( N ^ N )  / 
( _e ^ N
) ) ) ) )
23522, 151expcld 13008 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( N  +  1 ) ^ ( N  +  1 ) )  e.  CC )
236229, 151expcld 13008 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
_e ^ ( N  +  1 ) )  e.  CC )
23723, 2expcld 13008 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( N ^ N )  e.  CC )
238229, 2expcld 13008 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
_e ^ N )  e.  CC )
239229, 230, 158expne0d 13014 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
_e ^ ( N  +  1 ) )  =/=  0 )
240229, 230, 8expne0d 13014 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
_e ^ N )  =/=  0 )
24123, 24, 8expne0d 13014 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( N ^ N )  =/=  0 )
242235, 236, 237, 238, 239, 240, 241divdivdivd 10848 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  (
_e ^ ( N  +  1 ) ) )  /  ( ( N ^ N )  /  ( _e ^ N ) ) )  =  ( ( ( ( N  +  1 ) ^ ( N  +  1 ) )  x.  ( _e ^ N ) )  / 
( ( _e ^
( N  +  1 ) )  x.  ( N ^ N ) ) ) )
243235, 238mulcomd 10061 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( N  + 
1 ) ^ ( N  +  1 ) )  x.  ( _e
^ N ) )  =  ( ( _e
^ N )  x.  ( ( N  + 
1 ) ^ ( N  +  1 ) ) ) )
244243oveq1d 6665 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  x.  (
_e ^ N ) )  /  ( ( _e ^ ( N  +  1 ) )  x.  ( N ^ N ) ) )  =  ( ( ( _e ^ N )  x.  ( ( N  +  1 ) ^
( N  +  1 ) ) )  / 
( ( _e ^
( N  +  1 ) )  x.  ( N ^ N ) ) ) )
245238, 236, 235, 237, 239, 241divmuldivd 10842 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  /  (
_e ^ ( N  +  1 ) ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  =  ( ( ( _e ^ N )  x.  ( ( N  +  1 ) ^
( N  +  1 ) ) )  / 
( ( _e ^
( N  +  1 ) )  x.  ( N ^ N ) ) ) )
246229, 2expp1d 13009 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  (
_e ^ ( N  +  1 ) )  =  ( ( _e
^ N )  x.  _e ) )
247246oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( _e ^ N
)  /  ( _e
^ ( N  + 
1 ) ) )  =  ( ( _e
^ N )  / 
( ( _e ^ N )  x.  _e ) ) )
248238, 238, 229, 240, 230divdiv1d 10832 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  /  (
_e ^ N ) )  /  _e )  =  ( ( _e
^ N )  / 
( ( _e ^ N )  x.  _e ) ) )
249238, 240dividd 10799 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  (
( _e ^ N
)  /  ( _e
^ N ) )  =  1 )
250249oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  /  (
_e ^ N ) )  /  _e )  =  ( 1  /  _e ) )
251247, 248, 2503eqtr2d 2662 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( _e ^ N
)  /  ( _e
^ ( N  + 
1 ) ) )  =  ( 1  /  _e ) )
252251oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  /  (
_e ^ ( N  +  1 ) ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  =  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) ) )
253245, 252eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  x.  (
( N  +  1 ) ^ ( N  +  1 ) ) )  /  ( ( _e ^ ( N  +  1 ) )  x.  ( N ^ N ) ) )  =  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) ) )
254242, 244, 2533eqtrd 2660 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  (
_e ^ ( N  +  1 ) ) )  /  ( ( N ^ N )  /  ( _e ^ N ) ) )  =  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) ) )
255254oveq2d 6666 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( _e
^ ( N  + 
1 ) ) )  /  ( ( N ^ N )  / 
( _e ^ N
) ) ) )  =  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( 1  /  _e )  x.  ( (
( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) ) ) )
256228, 234, 2553eqtrd 2660 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) ) )
257256oveq1d 6665 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( ( N  /  _e ) ^ N ) )  / 
( N  +  1 ) )  =  ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) )  /  ( N  + 
1 ) ) )
258235, 237, 241divcld 10801 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  e.  CC )
25935, 229, 258, 230div32d 10824 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 1  /  _e )  x.  ( (
( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  =  ( 1  x.  ( ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) )  /  _e ) ) )
260258, 229, 230divcld 10801 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) )  /  _e )  e.  CC )
261260mulid2d 10058 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) )  =  ( ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) )
262259, 261eqtrd 2656 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  /  _e )  x.  ( (
( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  =  ( ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) )
263262oveq2d 6666 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) ) )  =  ( ( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) ) )
264229, 230reccld 10794 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  /  _e )  e.  CC )
265264, 258mulcld 10060 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  /  _e )  x.  ( (
( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  e.  CC )
266218, 265, 22, 26div23d 10838 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) )  /  ( N  + 
1 ) )  =  ( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) ) )
267218, 22, 26divcld 10801 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  e.  CC )
268267, 258, 229, 230divassd 10836 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  /  _e )  =  ( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) ) )
269263, 266, 2683eqtr4d 2666 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) )  /  ( N  + 
1 ) )  =  ( ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  /  ( N  + 
1 ) )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) )  /  _e ) )
270227, 257, 2693eqtrd 2660 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  /  _e ) )
271187, 225, 2703eqtrd 2660 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 1  /  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) )  /  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  /  _e ) )
272182, 185, 2713eqtrd 2660 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( ! `  N
)  x.  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  /  _e ) )
273171, 179, 2723eqtrd 2660 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  /  ( ( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( ( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  /  _e ) )
274218, 22, 258, 26div32d 10824 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  ( N  + 
1 ) ) ) )
27522, 2expp1d 13009 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N  +  1 ) ^ ( N  +  1 ) )  =  ( ( ( N  +  1 ) ^ N )  x.  ( N  +  1 ) ) )
276275oveq1d 6665 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N  +  1 ) )  =  ( ( ( ( N  +  1 ) ^ N )  x.  ( N  + 
1 ) )  / 
( N  +  1 ) ) )
27722, 2expcld 13008 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N  +  1 ) ^ N )  e.  CC )
278277, 22, 26divcan4d 10807 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^ N )  x.  ( N  +  1 ) )  /  ( N  +  1 ) )  =  ( ( N  +  1 ) ^ N ) )
279276, 278eqtrd 2656 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N  +  1 ) )  =  ( ( N  +  1 ) ^ N ) )
280279oveq1d 6665 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N  +  1 ) )  /  ( N ^ N ) )  =  ( ( ( N  +  1 ) ^ N )  / 
( N ^ N
) ) )
281235, 237, 22, 241, 26divdiv32d 10826 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) )  /  ( N  + 
1 ) )  =  ( ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N  +  1 ) )  /  ( N ^ N ) ) )
28222, 23, 24, 2expdivd 13022 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  N
) ^ N )  =  ( ( ( N  +  1 ) ^ N )  / 
( N ^ N
) ) )
283280, 281, 2823eqtr4d 2666 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) )  /  ( N  + 
1 ) )  =  ( ( ( N  +  1 )  /  N ) ^ N
) )
284283oveq2d 6666 . . . . . . 7  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  ( N  + 
1 ) ) )  =  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) ) )
285274, 284eqtrd 2656 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) ) )
286285oveq1d 6665 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  /  _e )  =  ( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) )  /  _e ) )
287163, 273, 2863eqtrd 2660 . . . 4  |-  ( N  e.  NN  ->  (
( A `  N
)  /  ( A `
 ( N  + 
1 ) ) )  =  ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) )
288287fveq2d 6195 . . 3  |-  ( N  e.  NN  ->  ( log `  ( ( A `
 N )  / 
( A `  ( N  +  1 ) ) ) )  =  ( log `  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) ) )
28983, 84, 2883eqtr2d 2662 . 2  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  =  ( log `  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) ) )
29035, 43addcld 10059 . . . . . 6  |-  ( N  e.  NN  ->  (
1  +  ( 2  x.  N ) )  e.  CC )
291290halfcld 11277 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  e.  CC )
292291, 28mulcld 10060 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  e.  CC )
293292, 35subcld 10392 . . 3  |-  ( N  e.  NN  ->  (
( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )
294 stirlinglem4.3 . . . . 5  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
295294a1i 11 . . . 4  |-  ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  ->  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  / 
2 )  x.  ( log `  ( ( n  +  1 )  /  n ) ) )  -  1 ) ) )
296 simpr 477 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  n  =  N )
297296oveq2d 6666 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( 2  x.  n )  =  ( 2  x.  N
) )
298297oveq2d 6666 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( 1  +  ( 2  x.  n ) )  =  ( 1  +  ( 2  x.  N ) ) )
299298oveq1d 6665 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( (
1  +  ( 2  x.  n ) )  /  2 )  =  ( ( 1  +  ( 2  x.  N
) )  /  2
) )
300296oveq1d 6665 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( n  +  1 )  =  ( N  +  1 ) )
301300, 296oveq12d 6668 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( (
n  +  1 )  /  n )  =  ( ( N  + 
1 )  /  N
) )
302301fveq2d 6195 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( log `  ( ( n  + 
1 )  /  n
) )  =  ( log `  ( ( N  +  1 )  /  N ) ) )
303299, 302oveq12d 6668 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( (
( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  =  ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) ) )
304303oveq1d 6665 . . . 4  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( (
( ( 1  +  ( 2  x.  n
) )  /  2
)  x.  ( log `  ( ( n  + 
1 )  /  n
) ) )  - 
1 )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 ) )
305 simpl 473 . . . 4  |-  ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  ->  N  e.  NN )
306 simpr 477 . . . 4  |-  ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  ->  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )
307295, 304, 305, 306fvmptd 6288 . . 3  |-  ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  ->  ( J `  N )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 ) )
308293, 307mpdan 702 . 2  |-  ( N  e.  NN  ->  ( J `  N )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
30952, 289, 3083eqtr4d 2666 1  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  =  ( J `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   RR+crp 11832   ^cexp 12860   !cfa 13060   sqrcsqrt 13973   _eceu 14793   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  stirlinglem9  40299
  Copyright terms: Public domain W3C validator