Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem14 Structured version   Visualization version   Unicode version

Theorem stirlinglem14 40304
Description: The sequence  A converges to a positive real. This proves that the Stirling's formula converges to the factorial, up to a constant. In another theorem, using Wallis' formula for π& , such constant is exactly determined, thus proving the Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem14.1  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
stirlinglem14.2  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
Assertion
Ref Expression
stirlinglem14  |-  E. c  e.  RR+  A  ~~>  c
Distinct variable group:    A, c
Allowed substitution hints:    A( n)    B( n, c)

Proof of Theorem stirlinglem14
Dummy variables  k 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stirlinglem14.1 . . 3  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
2 stirlinglem14.2 . . 3  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
31, 2stirlinglem13 40303 . 2  |-  E. d  e.  RR  B  ~~>  d
4 simpl 473 . . . . 5  |-  ( ( d  e.  RR  /\  B 
~~>  d )  ->  d  e.  RR )
54rpefcld 14835 . . . 4  |-  ( ( d  e.  RR  /\  B 
~~>  d )  ->  ( exp `  d )  e.  RR+ )
6 nnuz 11723 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
7 1zzd 11408 . . . . . 6  |-  ( ( d  e.  RR  /\  B 
~~>  d )  ->  1  e.  ZZ )
8 efcn 24197 . . . . . . 7  |-  exp  e.  ( CC -cn-> CC )
98a1i 11 . . . . . 6  |-  ( ( d  e.  RR  /\  B 
~~>  d )  ->  exp  e.  ( CC -cn-> CC ) )
10 nnnn0 11299 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  NN0 )
11 faccl 13070 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( ! `
 n )  e.  NN )
12 nncn 11028 . . . . . . . . . . . . 13  |-  ( ( ! `  n )  e.  NN  ->  ( ! `  n )  e.  CC )
1310, 11, 123syl 18 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  ( ! `  n )  e.  CC )
14 2cnd 11093 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  2  e.  CC )
15 nncn 11028 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  CC )
1614, 15mulcld 10060 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  CC )
1716sqrtcld 14176 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  ( sqr `  ( 2  x.  n ) )  e.  CC )
18 epr 14936 . . . . . . . . . . . . . . . . 17  |-  _e  e.  RR+
19 rpcn 11841 . . . . . . . . . . . . . . . . 17  |-  ( _e  e.  RR+  ->  _e  e.  CC )
2018, 19ax-mp 5 . . . . . . . . . . . . . . . 16  |-  _e  e.  CC
2120a1i 11 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  _e  e.  CC )
22 0re 10040 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
23 epos 14935 . . . . . . . . . . . . . . . . 17  |-  0  <  _e
2422, 23gtneii 10149 . . . . . . . . . . . . . . . 16  |-  _e  =/=  0
2524a1i 11 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  _e  =/=  0 )
2615, 21, 25divcld 10801 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n  /  _e )  e.  CC )
2726, 10expcld 13008 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
( n  /  _e ) ^ n )  e.  CC )
2817, 27mulcld 10060 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) )  e.  CC )
29 2rp 11837 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR+
3029a1i 11 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  2  e.  RR+ )
31 nnrp 11842 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  n  e.  RR+ )
3230, 31rpmulcld 11888 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR+ )
3332sqrtgt0d 14151 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  <  ( sqr `  (
2  x.  n ) ) )
3433gt0ne0d 10592 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  ( sqr `  ( 2  x.  n ) )  =/=  0 )
35 nnne0 11053 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  =/=  0 )
3615, 21, 35, 25divne0d 10817 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n  /  _e )  =/=  0 )
37 nnz 11399 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  ZZ )
3826, 36, 37expne0d 13014 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
( n  /  _e ) ^ n )  =/=  0 )
3917, 27, 34, 38mulne0d 10679 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) )  =/=  0 )
4013, 28, 39divcld 10801 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) )  e.  CC )
411fvmpt2 6291 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) )  e.  CC )  ->  ( A `  n )  =  ( ( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) ) )
4240, 41mpdan 702 . . . . . . . . . 10  |-  ( n  e.  NN  ->  ( A `  n )  =  ( ( ! `
 n )  / 
( ( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
4342, 40eqeltrd 2701 . . . . . . . . 9  |-  ( n  e.  NN  ->  ( A `  n )  e.  CC )
44 nnne0 11053 . . . . . . . . . . . 12  |-  ( ( ! `  n )  e.  NN  ->  ( ! `  n )  =/=  0 )
4510, 11, 443syl 18 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  ( ! `  n )  =/=  0 )
4613, 28, 45, 39divne0d 10817 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) )  =/=  0 )
4742, 46eqnetrd 2861 . . . . . . . . 9  |-  ( n  e.  NN  ->  ( A `  n )  =/=  0 )
4843, 47logcld 24317 . . . . . . . 8  |-  ( n  e.  NN  ->  ( log `  ( A `  n ) )  e.  CC )
492, 48fmpti 6383 . . . . . . 7  |-  B : NN
--> CC
5049a1i 11 . . . . . 6  |-  ( ( d  e.  RR  /\  B 
~~>  d )  ->  B : NN --> CC )
51 simpr 477 . . . . . 6  |-  ( ( d  e.  RR  /\  B 
~~>  d )  ->  B  ~~>  d )
524recnd 10068 . . . . . 6  |-  ( ( d  e.  RR  /\  B 
~~>  d )  ->  d  e.  CC )
536, 7, 9, 50, 51, 52climcncf 22703 . . . . 5  |-  ( ( d  e.  RR  /\  B 
~~>  d )  ->  ( exp  o.  B )  ~~>  ( exp `  d ) )
548elexi 3213 . . . . . . . . 9  |-  exp  e.  _V
55 nnex 11026 . . . . . . . . . . 11  |-  NN  e.  _V
5655mptex 6486 . . . . . . . . . 10  |-  ( n  e.  NN  |->  ( log `  ( A `  n
) ) )  e. 
_V
572, 56eqeltri 2697 . . . . . . . . 9  |-  B  e. 
_V
5854, 57coex 7118 . . . . . . . 8  |-  ( exp 
o.  B )  e. 
_V
5958a1i 11 . . . . . . 7  |-  ( T. 
->  ( exp  o.  B
)  e.  _V )
6055mptex 6486 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( ! `  n )  /  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) ) )  e.  _V
611, 60eqeltri 2697 . . . . . . . 8  |-  A  e. 
_V
6261a1i 11 . . . . . . 7  |-  ( T. 
->  A  e.  _V )
63 1zzd 11408 . . . . . . 7  |-  ( T. 
->  1  e.  ZZ )
642funmpt2 5927 . . . . . . . . . 10  |-  Fun  B
65 id 22 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  NN )
66 rabid2 3118 . . . . . . . . . . . . 13  |-  ( NN  =  { n  e.  NN  |  ( log `  ( A `  n
) )  e.  _V } 
<-> 
A. n  e.  NN  ( log `  ( A `
 n ) )  e.  _V )
671stirlinglem2 40292 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  ( A `  n )  e.  RR+ )
68 relogcl 24322 . . . . . . . . . . . . . 14  |-  ( ( A `  n )  e.  RR+  ->  ( log `  ( A `  n
) )  e.  RR )
69 elex 3212 . . . . . . . . . . . . . 14  |-  ( ( log `  ( A `
 n ) )  e.  RR  ->  ( log `  ( A `  n ) )  e. 
_V )
7067, 68, 693syl 18 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  ( log `  ( A `  n ) )  e. 
_V )
7166, 70mprgbir 2927 . . . . . . . . . . . 12  |-  NN  =  { n  e.  NN  |  ( log `  ( A `  n )
)  e.  _V }
722dmmpt 5630 . . . . . . . . . . . 12  |-  dom  B  =  { n  e.  NN  |  ( log `  ( A `  n )
)  e.  _V }
7371, 72eqtr4i 2647 . . . . . . . . . . 11  |-  NN  =  dom  B
7465, 73syl6eleq 2711 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  dom  B )
75 fvco 6274 . . . . . . . . . 10  |-  ( ( Fun  B  /\  k  e.  dom  B )  -> 
( ( exp  o.  B ) `  k
)  =  ( exp `  ( B `  k
) ) )
7664, 74, 75sylancr 695 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( exp  o.  B
) `  k )  =  ( exp `  ( B `  k )
) )
771a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  A  =  ( n  e.  NN  |->  ( ( ! `
 n )  / 
( ( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) ) )
78 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN  /\  n  =  k )  ->  n  =  k )
7978fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ! `  n
)  =  ( ! `
 k ) )
8078oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( 2  x.  n
)  =  ( 2  x.  k ) )
8180fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( sqr `  (
2  x.  n ) )  =  ( sqr `  ( 2  x.  k
) ) )
8278oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( n  /  _e )  =  ( k  /  _e ) )
8382, 78oveq12d 6668 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ( n  /  _e ) ^ n )  =  ( ( k  /  _e ) ^
k ) )
8481, 83oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) )  =  ( ( sqr `  ( 2  x.  k
) )  x.  (
( k  /  _e ) ^ k ) ) )
8579, 84oveq12d 6668 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) )  =  ( ( ! `  k )  /  ( ( sqr `  ( 2  x.  k
) )  x.  (
( k  /  _e ) ^ k ) ) ) )
86 nnnn0 11299 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  k  e.  NN0 )
87 faccl 13070 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
88 nncn 11028 . . . . . . . . . . . . . . . 16  |-  ( ( ! `  k )  e.  NN  ->  ( ! `  k )  e.  CC )
8986, 87, 883syl 18 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  ( ! `  k )  e.  CC )
90 2cnd 11093 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  2  e.  CC )
91 nncn 11028 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  k  e.  CC )
9290, 91mulcld 10060 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  CC )
9392sqrtcld 14176 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  ( sqr `  ( 2  x.  k ) )  e.  CC )
9420a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  _e  e.  CC )
9524a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  _e  =/=  0 )
9691, 94, 95divcld 10801 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
k  /  _e )  e.  CC )
9796, 86expcld 13008 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
( k  /  _e ) ^ k )  e.  CC )
9893, 97mulcld 10060 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) )  e.  CC )
9929a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN  ->  2  e.  RR+ )
100 nnrp 11842 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN  ->  k  e.  RR+ )
10199, 100rpmulcld 11888 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  RR+ )
102101sqrtgt0d 14151 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  0  <  ( sqr `  (
2  x.  k ) ) )
103102gt0ne0d 10592 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  ( sqr `  ( 2  x.  k ) )  =/=  0 )
104 nnne0 11053 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  k  =/=  0 )
10591, 94, 104, 95divne0d 10817 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
k  /  _e )  =/=  0 )
106 nnz 11399 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  k  e.  ZZ )
10796, 105, 106expne0d 13014 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
( k  /  _e ) ^ k )  =/=  0 )
10893, 97, 103, 107mulne0d 10679 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) )  =/=  0 )
10989, 98, 108divcld 10801 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( ! `  k
)  /  ( ( sqr `  ( 2  x.  k ) )  x.  ( ( k  /  _e ) ^
k ) ) )  e.  CC )
11077, 85, 65, 109fvmptd 6288 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  ( A `  k )  =  ( ( ! `
 k )  / 
( ( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) ) )
111110, 109eqeltrd 2701 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  ( A `  k )  e.  CC )
112 nnne0 11053 . . . . . . . . . . . . . . 15  |-  ( ( ! `  k )  e.  NN  ->  ( ! `  k )  =/=  0 )
11386, 87, 1123syl 18 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  ( ! `  k )  =/=  0 )
11489, 98, 113, 108divne0d 10817 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( ! `  k
)  /  ( ( sqr `  ( 2  x.  k ) )  x.  ( ( k  /  _e ) ^
k ) ) )  =/=  0 )
115110, 114eqnetrd 2861 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  ( A `  k )  =/=  0 )
116111, 115logcld 24317 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  ( log `  ( A `  k ) )  e.  CC )
117 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ n
k
118 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ n log
119 nfmpt1 4747 . . . . . . . . . . . . . . 15  |-  F/_ n
( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
1201, 119nfcxfr 2762 . . . . . . . . . . . . . 14  |-  F/_ n A
121120, 117nffv 6198 . . . . . . . . . . . . 13  |-  F/_ n
( A `  k
)
122118, 121nffv 6198 . . . . . . . . . . . 12  |-  F/_ n
( log `  ( A `  k )
)
123 fveq2 6191 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( A `  n )  =  ( A `  k ) )
124123fveq2d 6195 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  k )
) )
125117, 122, 124, 2fvmptf 6301 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  ( log `  ( A `
 k ) )  e.  CC )  -> 
( B `  k
)  =  ( log `  ( A `  k
) ) )
126116, 125mpdan 702 . . . . . . . . . 10  |-  ( k  e.  NN  ->  ( B `  k )  =  ( log `  ( A `  k )
) )
127126fveq2d 6195 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( exp `  ( B `  k ) )  =  ( exp `  ( log `  ( A `  k ) ) ) )
128 eflog 24323 . . . . . . . . . 10  |-  ( ( ( A `  k
)  e.  CC  /\  ( A `  k )  =/=  0 )  -> 
( exp `  ( log `  ( A `  k ) ) )  =  ( A `  k ) )
129111, 115, 128syl2anc 693 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( exp `  ( log `  ( A `  k )
) )  =  ( A `  k ) )
13076, 127, 1293eqtrd 2660 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( exp  o.  B
) `  k )  =  ( A `  k ) )
131130adantl 482 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
( exp  o.  B
) `  k )  =  ( A `  k ) )
1326, 59, 62, 63, 131climeq 14298 . . . . . 6  |-  ( T. 
->  ( ( exp  o.  B )  ~~>  ( exp `  d )  <->  A  ~~>  ( exp `  d ) ) )
133132trud 1493 . . . . 5  |-  ( ( exp  o.  B )  ~~>  ( exp `  d
)  <->  A  ~~>  ( exp `  d ) )
13453, 133sylib 208 . . . 4  |-  ( ( d  e.  RR  /\  B 
~~>  d )  ->  A  ~~>  ( exp `  d ) )
135 breq2 4657 . . . . 5  |-  ( c  =  ( exp `  d
)  ->  ( A  ~~>  c 
<->  A  ~~>  ( exp `  d
) ) )
136135rspcev 3309 . . . 4  |-  ( ( ( exp `  d
)  e.  RR+  /\  A  ~~>  ( exp `  d ) )  ->  E. c  e.  RR+  A  ~~>  c )
1375, 134, 136syl2anc 693 . . 3  |-  ( ( d  e.  RR  /\  B 
~~>  d )  ->  E. c  e.  RR+  A  ~~>  c )
138137rexlimiva 3028 . 2  |-  ( E. d  e.  RR  B  ~~>  d  ->  E. c  e.  RR+  A  ~~>  c )
1393, 138ax-mp 5 1  |-  E. c  e.  RR+  A  ~~>  c
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   RR+crp 11832   ^cexp 12860   !cfa 13060   sqrcsqrt 13973    ~~> cli 14215   expce 14792   _eceu 14793   -cn->ccncf 22679   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-ulm 24131  df-log 24303  df-cxp 24304
This theorem is referenced by:  stirling  40306
  Copyright terms: Public domain W3C validator