MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem6 Structured version   Visualization version   Unicode version

Theorem uniioombllem6 23356
Description: Lemma for uniioombl 23357. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
uniioombl.a  |-  A  = 
U. ran  ( (,)  o.  F )
uniioombl.e  |-  ( ph  ->  ( vol* `  E )  e.  RR )
uniioombl.c  |-  ( ph  ->  C  e.  RR+ )
uniioombl.g  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.s  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
uniioombl.t  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
uniioombl.v  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
Assertion
Ref Expression
uniioombllem6  |-  ( ph  ->  ( ( vol* `  ( E  i^i  A
) )  +  ( vol* `  ( E  \  A ) ) )  <_  ( ( vol* `  E )  +  ( 4  x.  C ) ) )
Distinct variable groups:    x, F    x, G    x, A    x, C    ph, x    x, T
Allowed substitution hints:    S( x)    E( x)

Proof of Theorem uniioombllem6
Dummy variables  a 
i  j  k  n  y  z  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 11408 . . . 4  |-  ( ph  ->  1  e.  ZZ )
3 uniioombl.c . . . 4  |-  ( ph  ->  C  e.  RR+ )
4 eqidd 2623 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( T `
 m )  =  ( T `  m
) )
5 uniioombl.t . . . . . 6  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
6 eqidd 2623 . . . . . 6  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  a )  =  ( ( ( abs  o.  -  )  o.  G
) `  a )
)
7 uniioombl.g . . . . . . . . . 10  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
8 eqid 2622 . . . . . . . . . . 11  |-  ( ( abs  o.  -  )  o.  G )  =  ( ( abs  o.  -  )  o.  G )
98ovolfsf 23240 . . . . . . . . . 10  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  G ) : NN --> ( 0 [,) +oo ) )
107, 9syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( abs  o.  -  )  o.  G
) : NN --> ( 0 [,) +oo ) )
1110ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  a )  e.  ( 0 [,) +oo )
)
12 elrege0 12278 . . . . . . . 8  |-  ( ( ( ( abs  o.  -  )  o.  G
) `  a )  e.  ( 0 [,) +oo ) 
<->  ( ( ( ( abs  o.  -  )  o.  G ) `  a
)  e.  RR  /\  0  <_  ( ( ( abs  o.  -  )  o.  G ) `  a
) ) )
1311, 12sylib 208 . . . . . . 7  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  G
) `  a )  e.  RR  /\  0  <_ 
( ( ( abs 
o.  -  )  o.  G ) `  a
) ) )
1413simpld 475 . . . . . 6  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  a )  e.  RR )
1513simprd 479 . . . . . 6  |-  ( (
ph  /\  a  e.  NN )  ->  0  <_ 
( ( ( abs 
o.  -  )  o.  G ) `  a
) )
16 uniioombl.1 . . . . . . . 8  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
17 uniioombl.2 . . . . . . . 8  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
18 uniioombl.3 . . . . . . . 8  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
19 uniioombl.a . . . . . . . 8  |-  A  = 
U. ran  ( (,)  o.  F )
20 uniioombl.e . . . . . . . 8  |-  ( ph  ->  ( vol* `  E )  e.  RR )
21 uniioombl.s . . . . . . . 8  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
22 uniioombl.v . . . . . . . 8  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
2316, 17, 18, 19, 20, 3, 7, 21, 5, 22uniioombllem1 23349 . . . . . . 7  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
248, 5ovolsf 23241 . . . . . . . . . . . . 13  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  T : NN --> ( 0 [,) +oo ) )
257, 24syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  T : NN --> ( 0 [,) +oo ) )
26 frn 6053 . . . . . . . . . . . 12  |-  ( T : NN --> ( 0 [,) +oo )  ->  ran  T  C_  ( 0 [,) +oo ) )
2725, 26syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ran  T  C_  (
0 [,) +oo )
)
28 icossxr 12258 . . . . . . . . . . 11  |-  ( 0 [,) +oo )  C_  RR*
2927, 28syl6ss 3615 . . . . . . . . . 10  |-  ( ph  ->  ran  T  C_  RR* )
30 supxrub 12154 . . . . . . . . . 10  |-  ( ( ran  T  C_  RR*  /\  x  e.  ran  T )  ->  x  <_  sup ( ran  T ,  RR* ,  <  )
)
3129, 30sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ran  T )  ->  x  <_  sup ( ran  T ,  RR* ,  <  )
)
3231ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ran  T  x  <_  sup ( ran  T ,  RR* ,  <  ) )
33 ffn 6045 . . . . . . . . . 10  |-  ( T : NN --> ( 0 [,) +oo )  ->  T  Fn  NN )
3425, 33syl 17 . . . . . . . . 9  |-  ( ph  ->  T  Fn  NN )
35 breq1 4656 . . . . . . . . . 10  |-  ( x  =  ( T `  m )  ->  (
x  <_  sup ( ran  T ,  RR* ,  <  )  <-> 
( T `  m
)  <_  sup ( ran  T ,  RR* ,  <  ) ) )
3635ralrn 6362 . . . . . . . . 9  |-  ( T  Fn  NN  ->  ( A. x  e.  ran  T  x  <_  sup ( ran  T ,  RR* ,  <  )  <->  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  )
) )
3734, 36syl 17 . . . . . . . 8  |-  ( ph  ->  ( A. x  e. 
ran  T  x  <_  sup ( ran  T ,  RR* ,  <  )  <->  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  ) ) )
3832, 37mpbid 222 . . . . . . 7  |-  ( ph  ->  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  )
)
39 breq2 4657 . . . . . . . . 9  |-  ( x  =  sup ( ran 
T ,  RR* ,  <  )  ->  ( ( T `
 m )  <_  x 
<->  ( T `  m
)  <_  sup ( ran  T ,  RR* ,  <  ) ) )
4039ralbidv 2986 . . . . . . . 8  |-  ( x  =  sup ( ran 
T ,  RR* ,  <  )  ->  ( A. m  e.  NN  ( T `  m )  <_  x  <->  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  )
) )
4140rspcev 3309 . . . . . . 7  |-  ( ( sup ( ran  T ,  RR* ,  <  )  e.  RR  /\  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  ) )  ->  E. x  e.  RR  A. m  e.  NN  ( T `  m )  <_  x )
4223, 38, 41syl2anc 693 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  A. m  e.  NN  ( T `  m )  <_  x )
431, 5, 2, 6, 14, 15, 42isumsup2 14578 . . . . 5  |-  ( ph  ->  T  ~~>  sup ( ran  T ,  RR ,  <  )
)
44 rge0ssre 12280 . . . . . . 7  |-  ( 0 [,) +oo )  C_  RR
4527, 44syl6ss 3615 . . . . . 6  |-  ( ph  ->  ran  T  C_  RR )
46 1nn 11031 . . . . . . . . 9  |-  1  e.  NN
47 fdm 6051 . . . . . . . . . 10  |-  ( T : NN --> ( 0 [,) +oo )  ->  dom  T  =  NN )
4825, 47syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  T  =  NN )
4946, 48syl5eleqr 2708 . . . . . . . 8  |-  ( ph  ->  1  e.  dom  T
)
50 ne0i 3921 . . . . . . . 8  |-  ( 1  e.  dom  T  ->  dom  T  =/=  (/) )
5149, 50syl 17 . . . . . . 7  |-  ( ph  ->  dom  T  =/=  (/) )
52 dm0rn0 5342 . . . . . . . 8  |-  ( dom 
T  =  (/)  <->  ran  T  =  (/) )
5352necon3bii 2846 . . . . . . 7  |-  ( dom 
T  =/=  (/)  <->  ran  T  =/=  (/) )
5451, 53sylib 208 . . . . . 6  |-  ( ph  ->  ran  T  =/=  (/) )
55 breq2 4657 . . . . . . . . 9  |-  ( y  =  sup ( ran 
T ,  RR* ,  <  )  ->  ( x  <_ 
y  <->  x  <_  sup ( ran  T ,  RR* ,  <  ) ) )
5655ralbidv 2986 . . . . . . . 8  |-  ( y  =  sup ( ran 
T ,  RR* ,  <  )  ->  ( A. x  e.  ran  T  x  <_ 
y  <->  A. x  e.  ran  T  x  <_  sup ( ran  T ,  RR* ,  <  ) ) )
5756rspcev 3309 . . . . . . 7  |-  ( ( sup ( ran  T ,  RR* ,  <  )  e.  RR  /\  A. x  e.  ran  T  x  <_  sup ( ran  T ,  RR* ,  <  ) )  ->  E. y  e.  RR  A. x  e.  ran  T  x  <_  y )
5823, 32, 57syl2anc 693 . . . . . 6  |-  ( ph  ->  E. y  e.  RR  A. x  e.  ran  T  x  <_  y )
59 supxrre 12157 . . . . . 6  |-  ( ( ran  T  C_  RR  /\ 
ran  T  =/=  (/)  /\  E. y  e.  RR  A. x  e.  ran  T  x  <_ 
y )  ->  sup ( ran  T ,  RR* ,  <  )  =  sup ( ran  T ,  RR ,  <  ) )
6045, 54, 58, 59syl3anc 1326 . . . . 5  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  =  sup ( ran  T ,  RR ,  <  )
)
6143, 60breqtrrd 4681 . . . 4  |-  ( ph  ->  T  ~~>  sup ( ran  T ,  RR* ,  <  )
)
621, 2, 3, 4, 61climi2 14242 . . 3  |-  ( ph  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C )
631r19.2uz 14091 . . 3  |-  ( E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C  ->  E. m  e.  NN  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
)
6462, 63syl 17 . 2  |-  ( ph  ->  E. m  e.  NN  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)
65 1zzd 11408 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  1  e.  ZZ )
663ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  C  e.  RR+ )
67 simplrl 800 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  m  e.  NN )
6867nnrpd 11870 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  m  e.  RR+ )
6966, 68rpdivcld 11889 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( C  /  m )  e.  RR+ )
70 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( (,) `  ( F `  z
) )  e.  _V
7170inex1 4799 . . . . . . . . . . . . . . 15  |-  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  j )
) )  e.  _V
7271rgenw 2924 . . . . . . . . . . . . . 14  |-  A. z  e.  NN  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  j ) ) )  e.  _V
73 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( z  e.  NN  |->  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  j )
) ) )  =  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )
7473fnmpt 6020 . . . . . . . . . . . . . 14  |-  ( A. z  e.  NN  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) )  e. 
_V  ->  ( z  e.  NN  |->  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  j ) ) ) )  Fn  NN )
7572, 74mp1i 13 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  (
z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )  Fn  NN )
76 elfznn 12370 . . . . . . . . . . . . 13  |-  ( i  e.  ( 1 ... n )  ->  i  e.  NN )
77 fvco2 6273 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )  Fn  NN  /\  i  e.  NN )  ->  (
( vol*  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) `  i )  =  ( vol* `  ( ( z  e.  NN  |->  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  j ) ) ) ) `  i ) ) )
7875, 76, 77syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  (
( vol*  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) `  i )  =  ( vol* `  ( ( z  e.  NN  |->  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  j ) ) ) ) `  i ) ) )
7976adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  i  e.  NN )
80 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( z  =  i  ->  ( F `  z )  =  ( F `  i ) )
8180fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( z  =  i  ->  ( (,) `  ( F `  z ) )  =  ( (,) `  ( F `  i )
) )
8281ineq1d 3813 . . . . . . . . . . . . . . 15  |-  ( z  =  i  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )
83 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( (,) `  ( F `  i
) )  e.  _V
8483inex1 4799 . . . . . . . . . . . . . . 15  |-  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) )  e.  _V
8582, 73, 84fvmpt 6282 . . . . . . . . . . . . . 14  |-  ( i  e.  NN  ->  (
( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) `
 i )  =  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )
8679, 85syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  (
( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) `
 i )  =  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )
8786fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( vol* `  ( ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) `
 i ) )  =  ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
8878, 87eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  (
( vol*  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) `  i )  =  ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
89 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  n  e.  NN )
9089, 1syl6eleq 2711 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  n  e.  ( ZZ>= `  1 )
)
91 inss2 3834 . . . . . . . . . . . . . 14  |-  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) )  C_  ( (,) `  ( G `  j ) )
9291a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  ( (,) `  ( G `
 j ) ) )
93 inss2 3834 . . . . . . . . . . . . . . . . . . 19  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
947adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
95 elfznn 12370 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  ( 1 ... m )  ->  j  e.  NN )
96 ffvelrn 6357 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  ( G `  j )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
9794, 95, 96syl2an 494 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( G `  j )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
9893, 97sseldi 3601 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( G `  j )  e.  ( RR  X.  RR ) )
99 1st2nd2 7205 . . . . . . . . . . . . . . . . . 18  |-  ( ( G `  j )  e.  ( RR  X.  RR )  ->  ( G `
 j )  = 
<. ( 1st `  ( G `  j )
) ,  ( 2nd `  ( G `  j
) ) >. )
10098, 99syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( G `  j )  =  <. ( 1st `  ( G `  j )
) ,  ( 2nd `  ( G `  j
) ) >. )
101100fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( (,) `  ( G `  j ) )  =  ( (,) `  <. ( 1st `  ( G `
 j ) ) ,  ( 2nd `  ( G `  j )
) >. ) )
102 df-ov 6653 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) )  =  ( (,) `  <. ( 1st `  ( G `  j ) ) ,  ( 2nd `  ( G `  j )
) >. )
103101, 102syl6eqr 2674 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( (,) `  ( G `  j ) )  =  ( ( 1st `  ( G `  j )
) (,) ( 2nd `  ( G `  j
) ) ) )
104 ioossre 12235 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) )  C_  RR
105103, 104syl6eqss 3655 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( (,) `  ( G `  j ) )  C_  RR )
106105ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( (,) `  ( G `  j ) )  C_  RR )
107103fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  =  ( vol* `  ( ( 1st `  ( G `  j )
) (,) ( 2nd `  ( G `  j
) ) ) ) )
108 ovolfcl 23235 . . . . . . . . . . . . . . . . . 18  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  (
( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) ) )
10994, 95, 108syl2an 494 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  (
( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) ) )
110 ovolioo 23336 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) )  ->  ( vol* `  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
111109, 110syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( vol* `  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
112107, 111eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
113109simp2d 1074 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( 2nd `  ( G `  j ) )  e.  RR )
114109simp1d 1073 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( 1st `  ( G `  j ) )  e.  RR )
115113, 114resubcld 10458 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  (
( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) )  e.  RR )
116112, 115eqeltrd 2701 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR )
117116ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR )
118 ovolsscl 23254 . . . . . . . . . . . . 13  |-  ( ( ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  ( (,) `  ( G `
 j ) )  /\  ( (,) `  ( G `  j )
)  C_  RR  /\  ( vol* `  ( (,) `  ( G `  j
) ) )  e.  RR )  ->  ( vol* `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  e.  RR )
11992, 106, 117, 118syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( vol* `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  e.  RR )
120119recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( vol* `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  e.  CC )
12188, 90, 120fsumser 14461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  sum_ i  e.  ( 1 ... n
) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  (  seq 1
(  +  ,  ( vol*  o.  (
z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) ) `  n
) )
122121eqcomd 2628 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  (  seq 1 (  +  , 
( vol*  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) ) `  n
)  =  sum_ i  e.  ( 1 ... n
) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
123 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( z  =  k  ->  ( F `  z )  =  ( F `  k ) )
124123fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( z  =  k  ->  ( (,) `  ( F `  z ) )  =  ( (,) `  ( F `  k )
) )
125124ineq1d 3813 . . . . . . . . . . . . 13  |-  ( z  =  k  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( F `  k )
)  i^i  ( (,) `  ( G `  j
) ) ) )
126125cbvmptv 4750 . . . . . . . . . . . 12  |-  ( z  e.  NN  |->  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  j )
) ) )  =  ( k  e.  NN  |->  ( ( (,) `  ( F `  k )
)  i^i  ( (,) `  ( G `  j
) ) ) )
127 eqeq1 2626 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
z  =  (/)  <->  x  =  (/) ) )
128 infeq1 8382 . . . . . . . . . . . . . . 15  |-  ( z  =  x  -> inf ( z ,  RR* ,  <  )  = inf ( x ,  RR* ,  <  ) )
129 supeq1 8351 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  sup ( z ,  RR* ,  <  )  =  sup ( x ,  RR* ,  <  ) )
130128, 129opeq12d 4410 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  <.inf ( z ,  RR* ,  <  ) ,  sup ( z , 
RR* ,  <  ) >.  =  <.inf ( x , 
RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
)
131127, 130ifbieq2d 4111 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  if ( z  =  (/) , 
<. 0 ,  0
>. ,  <.inf ( z ,  RR* ,  <  ) ,  sup ( z , 
RR* ,  <  ) >.
)  =  if ( x  =  (/) ,  <. 0 ,  0 >. , 
<.inf ( x ,  RR* ,  <  ) ,  sup ( x ,  RR* ,  <  ) >. )
)
132131cbvmptv 4750 . . . . . . . . . . . 12  |-  ( z  e.  ran  (,)  |->  if ( z  =  (/) , 
<. 0 ,  0
>. ,  <.inf ( z ,  RR* ,  <  ) ,  sup ( z , 
RR* ,  <  ) >.
) )  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) , 
<. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
) )
13316, 17, 18, 19, 20, 3, 7, 21, 5, 22, 126, 132uniioombllem2 23351 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  seq 1
(  +  ,  ( vol*  o.  (
z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )  ~~>  ( vol* `  ( ( (,) `  ( G `  j ) )  i^i 
A ) ) )
13495, 133sylan2 491 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... m
) )  ->  seq 1 (  +  , 
( vol*  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )  ~~>  ( vol* `  ( ( (,) `  ( G `  j ) )  i^i 
A ) ) )
135134adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  seq 1 (  +  , 
( vol*  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )  ~~>  ( vol* `  ( ( (,) `  ( G `  j ) )  i^i 
A ) ) )
1361, 65, 69, 122, 135climi2 14242 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  E. a  e.  NN  A. n  e.  ( ZZ>= `  a )
( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
137 1z 11407 . . . . . . . . 9  |-  1  e.  ZZ
1381rexuz3 14088 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )
139137, 138ax-mp 5 . . . . . . . 8  |-  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
140136, 139sylib 208 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a )
( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
141140ralrimiva 2966 . . . . . 6  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  A. j  e.  ( 1 ... m ) E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
142 fzfi 12771 . . . . . . 7  |-  ( 1 ... m )  e. 
Fin
143 rexfiuz 14087 . . . . . . 7  |-  ( ( 1 ... m )  e.  Fin  ->  ( E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  A. j  e.  ( 1 ... m ) E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )
144142, 143ax-mp 5 . . . . . 6  |-  ( E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  A. j  e.  ( 1 ... m ) E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
145141, 144sylibr 224 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
1461rexuz3 14088 . . . . . 6  |-  ( 1  e.  ZZ  ->  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )
147137, 146ax-mp 5 . . . . 5  |-  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
148145, 147sylibr 224 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
1491r19.2uz 14091 . . . 4  |-  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  ->  E. n  e.  NN  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
150148, 149syl 17 . . 3  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  E. n  e.  NN  A. j  e.  ( 1 ... m ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
15116adantr 481 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
15217adantr 481 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
15320adantr 481 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  ( vol* `  E )  e.  RR )
1543adantr 481 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  C  e.  RR+ )
1557adantr 481 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
15621adantr 481 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  E  C_  U. ran  ( (,)  o.  G ) )
15722adantr 481 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
158 simprll 802 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  m  e.  NN )
159 simprlr 803 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
)
160 eqid 2622 . . . . 5  |-  U. (
( (,)  o.  G
) " ( 1 ... m ) )  =  U. ( ( (,)  o.  G )
" ( 1 ... m ) )
161 simprrl 804 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  n  e.  NN )
162 simprrr 805 . . . . . 6  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  A. j  e.  ( 1 ... m ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
163 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( i  =  z  ->  ( F `  i )  =  ( F `  z ) )
164163fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( i  =  z  ->  ( (,) `  ( F `  i ) )  =  ( (,) `  ( F `  z )
) )
165164ineq1d 3813 . . . . . . . . . . . . 13  |-  ( i  =  z  ->  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )
166165fveq2d 6195 . . . . . . . . . . . 12  |-  ( i  =  z  ->  ( vol* `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  =  ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
167166cbvsumv 14426 . . . . . . . . . . 11  |-  sum_ i  e.  ( 1 ... n
) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  sum_ z  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )
168 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( j  =  k  ->  ( G `  j )  =  ( G `  k ) )
169168fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  ( (,) `  ( G `  j ) )  =  ( (,) `  ( G `  k )
) )
170169ineq2d 3814 . . . . . . . . . . . . 13  |-  ( j  =  k  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )
171170fveq2d 6195 . . . . . . . . . . . 12  |-  ( j  =  k  ->  ( vol* `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  j )
) ) )  =  ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) ) )
172171sumeq2sdv 14435 . . . . . . . . . . 11  |-  ( j  =  k  ->  sum_ z  e.  ( 1 ... n
) ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  sum_ z  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) ) )
173167, 172syl5eq 2668 . . . . . . . . . 10  |-  ( j  =  k  ->  sum_ i  e.  ( 1 ... n
) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  sum_ z  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) ) )
174169ineq1d 3813 . . . . . . . . . . 11  |-  ( j  =  k  ->  (
( (,) `  ( G `  j )
)  i^i  A )  =  ( ( (,) `  ( G `  k
) )  i^i  A
) )
175174fveq2d 6195 . . . . . . . . . 10  |-  ( j  =  k  ->  ( vol* `  ( ( (,) `  ( G `
 j ) )  i^i  A ) )  =  ( vol* `  ( ( (,) `  ( G `  k )
)  i^i  A )
) )
176173, 175oveq12d 6668 . . . . . . . . 9  |-  ( j  =  k  ->  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) )  =  (
sum_ z  e.  ( 1 ... n ) ( vol* `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) )
177176fveq2d 6195 . . . . . . . 8  |-  ( j  =  k  ->  ( abs `  ( sum_ i  e.  ( 1 ... n
) ( vol* `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  =  ( abs `  ( sum_ z  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) ) )
178177breq1d 4663 . . . . . . 7  |-  ( j  =  k  ->  (
( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  ( abs `  ( sum_ z  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )
179178cbvralv 3171 . . . . . 6  |-  ( A. j  e.  ( 1 ... m ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  A. k  e.  ( 1 ... m ) ( abs `  ( sum_ z  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) )  < 
( C  /  m
) )
180162, 179sylib 208 . . . . 5  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  A. k  e.  ( 1 ... m ) ( abs `  ( sum_ z  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) )  < 
( C  /  m
) )
181 eqid 2622 . . . . 5  |-  U. (
( (,)  o.  F
) " ( 1 ... n ) )  =  U. ( ( (,)  o.  F )
" ( 1 ... n ) )
182151, 152, 18, 19, 153, 154, 155, 156, 5, 157, 158, 159, 160, 161, 180, 181uniioombllem5 23355 . . . 4  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  ( ( vol* `  ( E  i^i  A ) )  +  ( vol* `  ( E  \  A ) ) )  <_  (
( vol* `  E )  +  ( 4  x.  C ) ) )
183182anassrs 680 . . 3  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  (
n  e.  NN  /\  A. j  e.  ( 1 ... m ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )  -> 
( ( vol* `  ( E  i^i  A
) )  +  ( vol* `  ( E  \  A ) ) )  <_  ( ( vol* `  E )  +  ( 4  x.  C ) ) )
184150, 183rexlimddv 3035 . 2  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  ( ( vol* `  ( E  i^i  A ) )  +  ( vol* `  ( E  \  A ) ) )  <_  (
( vol* `  E )  +  ( 4  x.  C ) ) )
18564, 184rexlimddv 3035 1  |-  ( ph  ->  ( ( vol* `  ( E  i^i  A
) )  +  ( vol* `  ( E  \  A ) ) )  <_  ( ( vol* `  E )  +  ( 4  x.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   <.cop 4183   U.cuni 4436  Disj wdisj 4620   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Fincfn 7955   supcsup 8346  infcinf 8347   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   4c4 11072   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   (,)cioo 12175   [,)cico 12177   ...cfz 12326    seqcseq 12801   abscabs 13974    ~~> cli 14215   sum_csu 14416   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  uniioombl  23357
  Copyright terms: Public domain W3C validator