| Step | Hyp | Ref
| Expression |
| 1 | | nnuz 11723 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
| 2 | | 1zzd 11408 |
. . 3
⊢ (𝐴 ∈ 𝑆 → 1 ∈ ℤ) |
| 3 | | neg1cn 11124 |
. . . 4
⊢ -1 ∈
ℂ |
| 4 | 3 | a1i 11 |
. . 3
⊢ (𝐴 ∈ 𝑆 → -1 ∈ ℂ) |
| 5 | | ax-1cn 9994 |
. . . . . 6
⊢ 1 ∈
ℂ |
| 6 | | logtayl2.s |
. . . . . . . . 9
⊢ 𝑆 = (1(ball‘(abs ∘
− ))1) |
| 7 | 6 | eleq2i 2693 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑆 ↔ 𝐴 ∈ (1(ball‘(abs ∘ −
))1)) |
| 8 | | cnxmet 22576 |
. . . . . . . . 9
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
| 9 | | 1rp 11836 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ+ |
| 10 | | rpxr 11840 |
. . . . . . . . . 10
⊢ (1 ∈
ℝ+ → 1 ∈ ℝ*) |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . . 9
⊢ 1 ∈
ℝ* |
| 12 | | elbl 22193 |
. . . . . . . . 9
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ
∧ 1 ∈ ℝ*) → (𝐴 ∈ (1(ball‘(abs ∘ −
))1) ↔ (𝐴 ∈
ℂ ∧ (1(abs ∘ − )𝐴) < 1))) |
| 13 | 8, 5, 11, 12 | mp3an 1424 |
. . . . . . . 8
⊢ (𝐴 ∈ (1(ball‘(abs
∘ − ))1) ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ −
)𝐴) <
1)) |
| 14 | 7, 13 | bitri 264 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1(abs ∘ −
)𝐴) <
1)) |
| 15 | 14 | simplbi 476 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ ℂ) |
| 16 | | subcl 10280 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1 − 𝐴) ∈ ℂ) |
| 17 | 5, 15, 16 | sylancr 695 |
. . . . 5
⊢ (𝐴 ∈ 𝑆 → (1 − 𝐴) ∈ ℂ) |
| 18 | | eqid 2622 |
. . . . . . . 8
⊢ (abs
∘ − ) = (abs ∘ − ) |
| 19 | 18 | cnmetdval 22574 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴))) |
| 20 | 5, 15, 19 | sylancr 695 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → (1(abs ∘ − )𝐴) = (abs‘(1 − 𝐴))) |
| 21 | 14 | simprbi 480 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → (1(abs ∘ − )𝐴) < 1) |
| 22 | 20, 21 | eqbrtrrd 4677 |
. . . . 5
⊢ (𝐴 ∈ 𝑆 → (abs‘(1 − 𝐴)) < 1) |
| 23 | | logtayl 24406 |
. . . . 5
⊢ (((1
− 𝐴) ∈ ℂ
∧ (abs‘(1 − 𝐴)) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ (((1
− 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 −
𝐴)))) |
| 24 | 17, 22, 23 | syl2anc 693 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘(1 − (1 −
𝐴)))) |
| 25 | | nncan 10310 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1 − (1 − 𝐴)) = 𝐴) |
| 26 | 5, 15, 25 | sylancr 695 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → (1 − (1 − 𝐴)) = 𝐴) |
| 27 | 26 | fveq2d 6195 |
. . . . 5
⊢ (𝐴 ∈ 𝑆 → (log‘(1 − (1 −
𝐴))) = (log‘𝐴)) |
| 28 | 27 | negeqd 10275 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → -(log‘(1 − (1 −
𝐴))) = -(log‘𝐴)) |
| 29 | 24, 28 | breqtrd 4679 |
. . 3
⊢ (𝐴 ∈ 𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))) ⇝ -(log‘𝐴)) |
| 30 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → ((1 − 𝐴)↑𝑘) = ((1 − 𝐴)↑𝑛)) |
| 31 | | id 22 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → 𝑘 = 𝑛) |
| 32 | 30, 31 | oveq12d 6668 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (((1 − 𝐴)↑𝑘) / 𝑘) = (((1 − 𝐴)↑𝑛) / 𝑛)) |
| 33 | | eqid 2622 |
. . . . . 6
⊢ (𝑘 ∈ ℕ ↦ (((1
− 𝐴)↑𝑘) / 𝑘)) = (𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘)) |
| 34 | | ovex 6678 |
. . . . . 6
⊢ (((1
− 𝐴)↑𝑛) / 𝑛) ∈ V |
| 35 | 32, 33, 34 | fvmpt 6282 |
. . . . 5
⊢ (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (((1
− 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛)) |
| 36 | 35 | adantl 482 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) = (((1 − 𝐴)↑𝑛) / 𝑛)) |
| 37 | | nnnn0 11299 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
| 38 | | expcl 12878 |
. . . . . 6
⊢ (((1
− 𝐴) ∈ ℂ
∧ 𝑛 ∈
ℕ0) → ((1 − 𝐴)↑𝑛) ∈ ℂ) |
| 39 | 17, 37, 38 | syl2an 494 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) ∈ ℂ) |
| 40 | | nncn 11028 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
| 41 | 40 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
| 42 | | nnne0 11053 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) |
| 43 | 42 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0) |
| 44 | 39, 41, 43 | divcld 10801 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (((1 − 𝐴)↑𝑛) / 𝑛) ∈ ℂ) |
| 45 | 36, 44 | eqeltrd 2701 |
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛) ∈ ℂ) |
| 46 | 39, 41, 43 | divnegd 10814 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → -(((1 − 𝐴)↑𝑛) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛)) |
| 47 | 44 | mulm1d 10482 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1 · (((1
− 𝐴)↑𝑛) / 𝑛)) = -(((1 − 𝐴)↑𝑛) / 𝑛)) |
| 48 | 37 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
| 49 | | expcl 12878 |
. . . . . . . . . 10
⊢ ((-1
∈ ℂ ∧ 𝑛
∈ ℕ0) → (-1↑𝑛) ∈ ℂ) |
| 50 | 3, 48, 49 | sylancr 695 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1↑𝑛) ∈
ℂ) |
| 51 | | subcl 10280 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐴 −
1) ∈ ℂ) |
| 52 | 15, 5, 51 | sylancl 694 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → (𝐴 − 1) ∈ ℂ) |
| 53 | | expcl 12878 |
. . . . . . . . . 10
⊢ (((𝐴 − 1) ∈ ℂ ∧
𝑛 ∈
ℕ0) → ((𝐴 − 1)↑𝑛) ∈ ℂ) |
| 54 | 52, 37, 53 | syl2an 494 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((𝐴 − 1)↑𝑛) ∈ ℂ) |
| 55 | 50, 54 | mulneg1d 10483 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛)) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛))) |
| 56 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → -1 ∈
ℂ) |
| 57 | | neg1ne0 11126 |
. . . . . . . . . . . 12
⊢ -1 ≠
0 |
| 58 | 57 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → -1 ≠
0) |
| 59 | | nnz 11399 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
| 60 | 59 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
| 61 | 56, 58, 60 | expm1d 13018 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = ((-1↑𝑛) / -1)) |
| 62 | 5 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → 1 ∈
ℂ) |
| 63 | | ax-1ne0 10005 |
. . . . . . . . . . . 12
⊢ 1 ≠
0 |
| 64 | 63 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → 1 ≠
0) |
| 65 | 50, 62, 64 | divneg2d 10815 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = ((-1↑𝑛) / -1)) |
| 66 | 50 | div1d 10793 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((-1↑𝑛) / 1) = (-1↑𝑛)) |
| 67 | 66 | negeqd 10275 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → -((-1↑𝑛) / 1) = -(-1↑𝑛)) |
| 68 | 61, 65, 67 | 3eqtr2d 2662 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) = -(-1↑𝑛)) |
| 69 | 68 | oveq1d 6665 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = (-(-1↑𝑛) · ((𝐴 − 1)↑𝑛))) |
| 70 | 52 | mulm1d 10482 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑆 → (-1 · (𝐴 − 1)) = -(𝐴 − 1)) |
| 71 | | negsubdi2 10340 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → -(𝐴 −
1) = (1 − 𝐴)) |
| 72 | 15, 5, 71 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑆 → -(𝐴 − 1) = (1 − 𝐴)) |
| 73 | 70, 72 | eqtr2d 2657 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑆 → (1 − 𝐴) = (-1 · (𝐴 − 1))) |
| 74 | 73 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑆 → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛)) |
| 75 | 74 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1 · (𝐴 − 1))↑𝑛)) |
| 76 | | mulexp 12899 |
. . . . . . . . . . . 12
⊢ ((-1
∈ ℂ ∧ (𝐴
− 1) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((-1
· (𝐴 −
1))↑𝑛) =
((-1↑𝑛) ·
((𝐴 − 1)↑𝑛))) |
| 77 | 3, 76 | mp3an1 1411 |
. . . . . . . . . . 11
⊢ (((𝐴 − 1) ∈ ℂ ∧
𝑛 ∈
ℕ0) → ((-1 · (𝐴 − 1))↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛))) |
| 78 | 52, 37, 77 | syl2an 494 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((-1 · (𝐴 − 1))↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛))) |
| 79 | 75, 78 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((1 − 𝐴)↑𝑛) = ((-1↑𝑛) · ((𝐴 − 1)↑𝑛))) |
| 80 | 79 | negeqd 10275 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → -((1 − 𝐴)↑𝑛) = -((-1↑𝑛) · ((𝐴 − 1)↑𝑛))) |
| 81 | 55, 69, 80 | 3eqtr4d 2666 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) = -((1 − 𝐴)↑𝑛)) |
| 82 | 81 | oveq1d 6665 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (-((1 − 𝐴)↑𝑛) / 𝑛)) |
| 83 | 46, 47, 82 | 3eqtr4d 2666 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1 · (((1
− 𝐴)↑𝑛) / 𝑛)) = (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛)) |
| 84 | | nnm1nn0 11334 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
| 85 | 84 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (𝑛 − 1) ∈
ℕ0) |
| 86 | | expcl 12878 |
. . . . . . 7
⊢ ((-1
∈ ℂ ∧ (𝑛
− 1) ∈ ℕ0) → (-1↑(𝑛 − 1)) ∈ ℂ) |
| 87 | 3, 85, 86 | sylancr 695 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) ∈
ℂ) |
| 88 | 87, 54, 41, 43 | div23d 10838 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝐴 − 1)↑𝑛)) / 𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛))) |
| 89 | 83, 88 | eqtr2d 2657 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛))) |
| 90 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1)) |
| 91 | 90 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (-1↑(𝑘 − 1)) = (-1↑(𝑛 − 1))) |
| 92 | 91, 31 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → ((-1↑(𝑘 − 1)) / 𝑘) = ((-1↑(𝑛 − 1)) / 𝑛)) |
| 93 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → ((𝐴 − 1)↑𝑘) = ((𝐴 − 1)↑𝑛)) |
| 94 | 92, 93 | oveq12d 6668 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛))) |
| 95 | | eqid 2622 |
. . . . . 6
⊢ (𝑘 ∈ ℕ ↦
(((-1↑(𝑘 − 1)) /
𝑘) · ((𝐴 − 1)↑𝑘))) = (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘))) |
| 96 | | ovex 6678 |
. . . . . 6
⊢
(((-1↑(𝑛
− 1)) / 𝑛) ·
((𝐴 − 1)↑𝑛)) ∈ V |
| 97 | 94, 95, 96 | fvmpt 6282 |
. . . . 5
⊢ (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦
(((-1↑(𝑘 − 1)) /
𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛))) |
| 98 | 97 | adantl 482 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (((-1↑(𝑛 − 1)) / 𝑛) · ((𝐴 − 1)↑𝑛))) |
| 99 | 36 | oveq2d 6666 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → (-1 · ((𝑘 ∈ ℕ ↦ (((1
− 𝐴)↑𝑘) / 𝑘))‘𝑛)) = (-1 · (((1 − 𝐴)↑𝑛) / 𝑛))) |
| 100 | 89, 98, 99 | 3eqtr4d 2666 |
. . 3
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))‘𝑛) = (-1 · ((𝑘 ∈ ℕ ↦ (((1 − 𝐴)↑𝑘) / 𝑘))‘𝑛))) |
| 101 | 1, 2, 4, 29, 45, 100 | isermulc2 14388 |
. 2
⊢ (𝐴 ∈ 𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (-1 · -(log‘𝐴))) |
| 102 | 6 | dvlog2lem 24398 |
. . . . . . . 8
⊢ 𝑆 ⊆ (ℂ ∖
(-∞(,]0)) |
| 103 | 102 | sseli 3599 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ (ℂ ∖
(-∞(,]0))) |
| 104 | | eqid 2622 |
. . . . . . . 8
⊢ (ℂ
∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) |
| 105 | 104 | logdmn0 24386 |
. . . . . . 7
⊢ (𝐴 ∈ (ℂ ∖
(-∞(,]0)) → 𝐴
≠ 0) |
| 106 | 103, 105 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → 𝐴 ≠ 0) |
| 107 | 15, 106 | logcld 24317 |
. . . . 5
⊢ (𝐴 ∈ 𝑆 → (log‘𝐴) ∈ ℂ) |
| 108 | 107 | negcld 10379 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → -(log‘𝐴) ∈ ℂ) |
| 109 | 108 | mulm1d 10482 |
. . 3
⊢ (𝐴 ∈ 𝑆 → (-1 · -(log‘𝐴)) = --(log‘𝐴)) |
| 110 | 107 | negnegd 10383 |
. . 3
⊢ (𝐴 ∈ 𝑆 → --(log‘𝐴) = (log‘𝐴)) |
| 111 | 109, 110 | eqtrd 2656 |
. 2
⊢ (𝐴 ∈ 𝑆 → (-1 · -(log‘𝐴)) = (log‘𝐴)) |
| 112 | 101, 111 | breqtrd 4679 |
1
⊢ (𝐴 ∈ 𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴)) |