| Step | Hyp | Ref
| Expression |
| 1 | | nnuz 11723 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
| 2 | | 1zzd 11408 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
| 3 | | stirlinglem5.1 |
. . . . . . . . 9
⊢ 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗))) |
| 4 | 3 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)))) |
| 5 | | 1cnd 10056 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 1 ∈
ℂ) |
| 6 | 5 | negcld 10379 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → -1 ∈
ℂ) |
| 7 | | nnm1nn0 11334 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → (𝑗 − 1) ∈
ℕ0) |
| 8 | 7 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 − 1) ∈
ℕ0) |
| 9 | 6, 8 | expcld 13008 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (-1↑(𝑗 − 1)) ∈
ℂ) |
| 10 | | nncn 11028 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℂ) |
| 11 | 10 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ) |
| 12 | | stirlinglem5.6 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇 ∈
ℝ+) |
| 13 | 12 | rpred 11872 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 14 | 13 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 15 | 14 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑇 ∈ ℂ) |
| 16 | | nnnn0 11299 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ0) |
| 17 | 16 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0) |
| 18 | 15, 17 | expcld 13008 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇↑𝑗) ∈ ℂ) |
| 19 | | nnne0 11053 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → 𝑗 ≠ 0) |
| 20 | 19 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ≠ 0) |
| 21 | 9, 11, 18, 20 | div32d 10824 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((-1↑(𝑗 − 1)) / 𝑗) · (𝑇↑𝑗)) = ((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗))) |
| 22 | 5, 15 | pncan2d 10394 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((1 + 𝑇) − 1) = 𝑇) |
| 23 | 22 | eqcomd 2628 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑇 = ((1 + 𝑇) − 1)) |
| 24 | 23 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇↑𝑗) = (((1 + 𝑇) − 1)↑𝑗)) |
| 25 | 24 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((-1↑(𝑗 − 1)) / 𝑗) · (𝑇↑𝑗)) = (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗))) |
| 26 | 21, 25 | eqtr3d 2658 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)) = (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗))) |
| 27 | 26 | mpteq2dva 4744 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))) |
| 28 | 4, 27 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → 𝐷 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))) |
| 29 | 28 | seqeq3d 12809 |
. . . . . 6
⊢ (𝜑 → seq1( + , 𝐷) = seq1( + , (𝑗 ∈ ℕ ↦
(((-1↑(𝑗 − 1)) /
𝑗) · (((1 + 𝑇) − 1)↑𝑗))))) |
| 30 | | 1cnd 10056 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℂ) |
| 31 | 30, 14 | addcld 10059 |
. . . . . . . . . 10
⊢ (𝜑 → (1 + 𝑇) ∈ ℂ) |
| 32 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (abs
∘ − ) = (abs ∘ − ) |
| 33 | 32 | cnmetdval 22574 |
. . . . . . . . . 10
⊢ ((1
∈ ℂ ∧ (1 + 𝑇) ∈ ℂ) → (1(abs ∘
− )(1 + 𝑇)) =
(abs‘(1 − (1 + 𝑇)))) |
| 34 | 30, 31, 33 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (1(abs ∘ − )(1
+ 𝑇)) = (abs‘(1
− (1 + 𝑇)))) |
| 35 | | 1m1e0 11089 |
. . . . . . . . . . . . . 14
⊢ (1
− 1) = 0 |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1 − 1) =
0) |
| 37 | 36 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((1 − 1) −
𝑇) = (0 − 𝑇)) |
| 38 | 30, 30, 14 | subsub4d 10423 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((1 − 1) −
𝑇) = (1 − (1 + 𝑇))) |
| 39 | | df-neg 10269 |
. . . . . . . . . . . . . 14
⊢ -𝑇 = (0 − 𝑇) |
| 40 | 39 | eqcomi 2631 |
. . . . . . . . . . . . 13
⊢ (0
− 𝑇) = -𝑇 |
| 41 | 40 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 − 𝑇) = -𝑇) |
| 42 | 37, 38, 41 | 3eqtr3d 2664 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 − (1 + 𝑇)) = -𝑇) |
| 43 | 42 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝜑 → (abs‘(1 − (1 +
𝑇))) = (abs‘-𝑇)) |
| 44 | 14 | absnegd 14188 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘-𝑇) = (abs‘𝑇)) |
| 45 | | stirlinglem5.7 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘𝑇) < 1) |
| 46 | 44, 45 | eqbrtrd 4675 |
. . . . . . . . . 10
⊢ (𝜑 → (abs‘-𝑇) < 1) |
| 47 | 43, 46 | eqbrtrd 4675 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘(1 − (1 +
𝑇))) <
1) |
| 48 | 34, 47 | eqbrtrd 4675 |
. . . . . . . 8
⊢ (𝜑 → (1(abs ∘ − )(1
+ 𝑇)) <
1) |
| 49 | | cnxmet 22576 |
. . . . . . . . . 10
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
| 50 | 49 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (abs ∘ − )
∈ (∞Met‘ℂ)) |
| 51 | | 1red 10055 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℝ) |
| 52 | 51 | rexrd 10089 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℝ*) |
| 53 | | elbl2 22195 |
. . . . . . . . 9
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (1 ∈ ℂ ∧ (1 + 𝑇) ∈ ℂ)) → ((1 + 𝑇) ∈ (1(ball‘(abs
∘ − ))1) ↔ (1(abs ∘ − )(1 + 𝑇)) < 1)) |
| 54 | 50, 52, 30, 31, 53 | syl22anc 1327 |
. . . . . . . 8
⊢ (𝜑 → ((1 + 𝑇) ∈ (1(ball‘(abs ∘ −
))1) ↔ (1(abs ∘ − )(1 + 𝑇)) < 1)) |
| 55 | 48, 54 | mpbird 247 |
. . . . . . 7
⊢ (𝜑 → (1 + 𝑇) ∈ (1(ball‘(abs ∘ −
))1)) |
| 56 | | eqid 2622 |
. . . . . . . 8
⊢
(1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘
− ))1) |
| 57 | 56 | logtayl2 24408 |
. . . . . . 7
⊢ ((1 +
𝑇) ∈
(1(ball‘(abs ∘ − ))1) → seq1( + , (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))) ⇝ (log‘(1 +
𝑇))) |
| 58 | 55, 57 | syl 17 |
. . . . . 6
⊢ (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦
(((-1↑(𝑗 − 1)) /
𝑗) · (((1 + 𝑇) − 1)↑𝑗)))) ⇝ (log‘(1 +
𝑇))) |
| 59 | 29, 58 | eqbrtrd 4675 |
. . . . 5
⊢ (𝜑 → seq1( + , 𝐷) ⇝ (log‘(1 + 𝑇))) |
| 60 | | seqex 12803 |
. . . . . 6
⊢ seq1( + ,
𝐹) ∈
V |
| 61 | 60 | a1i 11 |
. . . . 5
⊢ (𝜑 → seq1( + , 𝐹) ∈ V) |
| 62 | | stirlinglem5.2 |
. . . . . . . 8
⊢ 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇↑𝑗) / 𝑗)) |
| 63 | 62 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇↑𝑗) / 𝑗))) |
| 64 | 63 | seqeq3d 12809 |
. . . . . 6
⊢ (𝜑 → seq1( + , 𝐸) = seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇↑𝑗) / 𝑗)))) |
| 65 | | logtayl 24406 |
. . . . . . 7
⊢ ((𝑇 ∈ ℂ ∧
(abs‘𝑇) < 1)
→ seq1( + , (𝑗 ∈
ℕ ↦ ((𝑇↑𝑗) / 𝑗))) ⇝ -(log‘(1 − 𝑇))) |
| 66 | 14, 45, 65 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇↑𝑗) / 𝑗))) ⇝ -(log‘(1 − 𝑇))) |
| 67 | 64, 66 | eqbrtrd 4675 |
. . . . 5
⊢ (𝜑 → seq1( + , 𝐸) ⇝ -(log‘(1 −
𝑇))) |
| 68 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
| 69 | 68, 1 | syl6eleq 2711 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
| 70 | 3 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)))) |
| 71 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑛 → (𝑗 − 1) = (𝑛 − 1)) |
| 72 | 71 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑛 → (-1↑(𝑗 − 1)) = (-1↑(𝑛 − 1))) |
| 73 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑛 → (𝑇↑𝑗) = (𝑇↑𝑛)) |
| 74 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑛 → 𝑗 = 𝑛) |
| 75 | 73, 74 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑛 → ((𝑇↑𝑗) / 𝑗) = ((𝑇↑𝑛) / 𝑛)) |
| 76 | 72, 75 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑗 = 𝑛 → ((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)) = ((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛))) |
| 77 | 76 | adantl 482 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) ∧ 𝑗 = 𝑛) → ((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)) = ((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛))) |
| 78 | | elfznn 12370 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ) |
| 79 | 78 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ) |
| 80 | | 1cnd 10056 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 1 ∈
ℂ) |
| 81 | 80 | negcld 10379 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → -1 ∈
ℂ) |
| 82 | | nnm1nn0 11334 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
| 83 | 81, 82 | expcld 13008 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ →
(-1↑(𝑛 − 1))
∈ ℂ) |
| 84 | 79, 83 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (-1↑(𝑛 − 1)) ∈ ℂ) |
| 85 | 14 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑇 ∈ ℂ) |
| 86 | 79 | nnnn0d 11351 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ0) |
| 87 | 85, 86 | expcld 13008 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑇↑𝑛) ∈ ℂ) |
| 88 | 79 | nncnd 11036 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℂ) |
| 89 | 79 | nnne0d 11065 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ≠ 0) |
| 90 | 87, 88, 89 | divcld 10801 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((𝑇↑𝑛) / 𝑛) ∈ ℂ) |
| 91 | 84, 90 | mulcld 10060 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) ∈ ℂ) |
| 92 | 70, 77, 79, 91 | fvmptd 6288 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐷‘𝑛) = ((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛))) |
| 93 | 92, 91 | eqeltrd 2701 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐷‘𝑛) ∈ ℂ) |
| 94 | | addcl 10018 |
. . . . . . 7
⊢ ((𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (𝑛 + 𝑖) ∈ ℂ) |
| 95 | 94 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → (𝑛 + 𝑖) ∈ ℂ) |
| 96 | 69, 93, 95 | seqcl 12821 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐷)‘𝑘) ∈ ℂ) |
| 97 | 62 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇↑𝑗) / 𝑗))) |
| 98 | 75 | adantl 482 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) ∧ 𝑗 = 𝑛) → ((𝑇↑𝑗) / 𝑗) = ((𝑇↑𝑛) / 𝑛)) |
| 99 | 97, 98, 79, 90 | fvmptd 6288 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐸‘𝑛) = ((𝑇↑𝑛) / 𝑛)) |
| 100 | 99, 90 | eqeltrd 2701 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐸‘𝑛) ∈ ℂ) |
| 101 | 69, 100, 95 | seqcl 12821 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐸)‘𝑘) ∈ ℂ) |
| 102 | | simpll 790 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑) |
| 103 | | stirlinglem5.3 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)) + ((𝑇↑𝑗) / 𝑗))) |
| 104 | 103 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)) + ((𝑇↑𝑗) / 𝑗)))) |
| 105 | 76, 75 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑛 → (((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)) + ((𝑇↑𝑗) / 𝑗)) = (((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) + ((𝑇↑𝑛) / 𝑛))) |
| 106 | 105 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 = 𝑛) → (((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)) + ((𝑇↑𝑗) / 𝑗)) = (((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) + ((𝑇↑𝑛) / 𝑛))) |
| 107 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 108 | 83 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) ∈
ℂ) |
| 109 | 14 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑇 ∈ ℂ) |
| 110 | 107 | nnnn0d 11351 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
| 111 | 109, 110 | expcld 13008 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑇↑𝑛) ∈ ℂ) |
| 112 | 107 | nncnd 11036 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
| 113 | 107 | nnne0d 11065 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0) |
| 114 | 111, 112,
113 | divcld 10801 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑇↑𝑛) / 𝑛) ∈ ℂ) |
| 115 | 108, 114 | mulcld 10060 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) ∈ ℂ) |
| 116 | 115, 114 | addcld 10059 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) + ((𝑇↑𝑛) / 𝑛)) ∈ ℂ) |
| 117 | 104, 106,
107, 116 | fvmptd 6288 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = (((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) + ((𝑇↑𝑛) / 𝑛))) |
| 118 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)))) |
| 119 | 76 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 = 𝑛) → ((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)) = ((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛))) |
| 120 | 118, 119,
107, 115 | fvmptd 6288 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = ((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛))) |
| 121 | 120 | eqcomd 2628 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) = (𝐷‘𝑛)) |
| 122 | 62 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇↑𝑗) / 𝑗))) |
| 123 | 75 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 = 𝑛) → ((𝑇↑𝑗) / 𝑗) = ((𝑇↑𝑛) / 𝑛)) |
| 124 | 122, 123,
107, 114 | fvmptd 6288 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑛) = ((𝑇↑𝑛) / 𝑛)) |
| 125 | 124 | eqcomd 2628 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑇↑𝑛) / 𝑛) = (𝐸‘𝑛)) |
| 126 | 121, 125 | oveq12d 6668 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) + ((𝑇↑𝑛) / 𝑛)) = ((𝐷‘𝑛) + (𝐸‘𝑛))) |
| 127 | 117, 126 | eqtrd 2656 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = ((𝐷‘𝑛) + (𝐸‘𝑛))) |
| 128 | 102, 79, 127 | syl2anc 693 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐹‘𝑛) = ((𝐷‘𝑛) + (𝐸‘𝑛))) |
| 129 | 69, 93, 100, 128 | seradd 12843 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) = ((seq1( + , 𝐷)‘𝑘) + (seq1( + , 𝐸)‘𝑘))) |
| 130 | 1, 2, 59, 61, 67, 96, 101, 129 | climadd 14362 |
. . . 4
⊢ (𝜑 → seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) + -(log‘(1 −
𝑇)))) |
| 131 | | 1rp 11836 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
| 132 | 131 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ+) |
| 133 | 132, 12 | rpaddcld 11887 |
. . . . . . 7
⊢ (𝜑 → (1 + 𝑇) ∈
ℝ+) |
| 134 | 133 | rpne0d 11877 |
. . . . . 6
⊢ (𝜑 → (1 + 𝑇) ≠ 0) |
| 135 | 31, 134 | logcld 24317 |
. . . . 5
⊢ (𝜑 → (log‘(1 + 𝑇)) ∈
ℂ) |
| 136 | 30, 14 | subcld 10392 |
. . . . . 6
⊢ (𝜑 → (1 − 𝑇) ∈
ℂ) |
| 137 | 13, 51 | absltd 14168 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs‘𝑇) < 1 ↔ (-1 < 𝑇 ∧ 𝑇 < 1))) |
| 138 | 45, 137 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → (-1 < 𝑇 ∧ 𝑇 < 1)) |
| 139 | 138 | simprd 479 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 < 1) |
| 140 | 13, 139 | gtned 10172 |
. . . . . . 7
⊢ (𝜑 → 1 ≠ 𝑇) |
| 141 | 30, 14, 140 | subne0d 10401 |
. . . . . 6
⊢ (𝜑 → (1 − 𝑇) ≠ 0) |
| 142 | 136, 141 | logcld 24317 |
. . . . 5
⊢ (𝜑 → (log‘(1 −
𝑇)) ∈
ℂ) |
| 143 | 135, 142 | negsubd 10398 |
. . . 4
⊢ (𝜑 → ((log‘(1 + 𝑇)) + -(log‘(1 −
𝑇))) = ((log‘(1 +
𝑇)) − (log‘(1
− 𝑇)))) |
| 144 | 130, 143 | breqtrd 4679 |
. . 3
⊢ (𝜑 → seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 −
𝑇)))) |
| 145 | | nn0uz 11722 |
. . . 4
⊢
ℕ0 = (ℤ≥‘0) |
| 146 | | 0zd 11389 |
. . . 4
⊢ (𝜑 → 0 ∈
ℤ) |
| 147 | | stirlinglem5.5 |
. . . . . 6
⊢ 𝐺 = (𝑗 ∈ ℕ0 ↦ ((2
· 𝑗) +
1)) |
| 148 | | 2nn0 11309 |
. . . . . . . . 9
⊢ 2 ∈
ℕ0 |
| 149 | 148 | a1i 11 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ0
→ 2 ∈ ℕ0) |
| 150 | | id 22 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ0
→ 𝑗 ∈
ℕ0) |
| 151 | 149, 150 | nn0mulcld 11356 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ0
→ (2 · 𝑗)
∈ ℕ0) |
| 152 | | nn0p1nn 11332 |
. . . . . . 7
⊢ ((2
· 𝑗) ∈
ℕ0 → ((2 · 𝑗) + 1) ∈ ℕ) |
| 153 | 151, 152 | syl 17 |
. . . . . 6
⊢ (𝑗 ∈ ℕ0
→ ((2 · 𝑗) + 1)
∈ ℕ) |
| 154 | 147, 153 | fmpti 6383 |
. . . . 5
⊢ 𝐺:ℕ0⟶ℕ |
| 155 | 154 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐺:ℕ0⟶ℕ) |
| 156 | | 2re 11090 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
| 157 | 156 | a1i 11 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ 2 ∈ ℝ) |
| 158 | | nn0re 11301 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) |
| 159 | 157, 158 | remulcld 10070 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (2 · 𝑘)
∈ ℝ) |
| 160 | | 1red 10055 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ 1 ∈ ℝ) |
| 161 | 158, 160 | readdcld 10069 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℝ) |
| 162 | 157, 161 | remulcld 10070 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (2 · (𝑘 + 1))
∈ ℝ) |
| 163 | | 2rp 11837 |
. . . . . . . . 9
⊢ 2 ∈
ℝ+ |
| 164 | 163 | a1i 11 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ 2 ∈ ℝ+) |
| 165 | 158 | ltp1d 10954 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ 𝑘 < (𝑘 + 1)) |
| 166 | 158, 161,
164, 165 | ltmul2dd 11928 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (2 · 𝑘) <
(2 · (𝑘 +
1))) |
| 167 | 159, 162,
160, 166 | ltadd1dd 10638 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ ((2 · 𝑘) + 1)
< ((2 · (𝑘 + 1))
+ 1)) |
| 168 | 147 | a1i 11 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ 𝐺 = (𝑗 ∈ ℕ0
↦ ((2 · 𝑗) +
1))) |
| 169 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑗 = 𝑘) → 𝑗 = 𝑘) |
| 170 | 169 | oveq2d 6666 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ 𝑗 = 𝑘) → (2 · 𝑗) = (2 · 𝑘)) |
| 171 | 170 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ 𝑗 = 𝑘) → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1)) |
| 172 | | id 22 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℕ0) |
| 173 | | 2cnd 11093 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ 2 ∈ ℂ) |
| 174 | | nn0cn 11302 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
| 175 | 173, 174 | mulcld 10060 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (2 · 𝑘)
∈ ℂ) |
| 176 | | 1cnd 10056 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ 1 ∈ ℂ) |
| 177 | 175, 176 | addcld 10059 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ ((2 · 𝑘) + 1)
∈ ℂ) |
| 178 | 168, 171,
172, 177 | fvmptd 6288 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ (𝐺‘𝑘) = ((2 · 𝑘) + 1)) |
| 179 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑗 = (𝑘 + 1)) → 𝑗 = (𝑘 + 1)) |
| 180 | 179 | oveq2d 6666 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ 𝑗 = (𝑘 + 1)) → (2 · 𝑗) = (2 · (𝑘 + 1))) |
| 181 | 180 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ 𝑗 = (𝑘 + 1)) → ((2 · 𝑗) + 1) = ((2 · (𝑘 + 1)) + 1)) |
| 182 | | peano2nn0 11333 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
| 183 | 174, 176 | addcld 10059 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℂ) |
| 184 | 173, 183 | mulcld 10060 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (2 · (𝑘 + 1))
∈ ℂ) |
| 185 | 184, 176 | addcld 10059 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ ((2 · (𝑘 +
1)) + 1) ∈ ℂ) |
| 186 | 168, 181,
182, 185 | fvmptd 6288 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ (𝐺‘(𝑘 + 1)) = ((2 · (𝑘 + 1)) + 1)) |
| 187 | 167, 178,
186 | 3brtr4d 4685 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) |
| 188 | 187 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) |
| 189 | | eldifi 3732 |
. . . . . . 7
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → 𝑛 ∈
ℕ) |
| 190 | 189 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℕ) |
| 191 | | 1cnd 10056 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → 1 ∈
ℂ) |
| 192 | 191 | negcld 10379 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → -1 ∈
ℂ) |
| 193 | 189, 82 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → (𝑛 − 1) ∈
ℕ0) |
| 194 | 192, 193 | expcld 13008 |
. . . . . . . . 9
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → (-1↑(𝑛 − 1)) ∈
ℂ) |
| 195 | 194 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1↑(𝑛 − 1)) ∈
ℂ) |
| 196 | 14 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑇 ∈ ℂ) |
| 197 | 190 | nnnn0d 11351 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℕ0) |
| 198 | 196, 197 | expcld 13008 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝑇↑𝑛) ∈ ℂ) |
| 199 | 190 | nncnd 11036 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℂ) |
| 200 | 190 | nnne0d 11065 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ≠ 0) |
| 201 | 198, 199,
200 | divcld 10801 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((𝑇↑𝑛) / 𝑛) ∈ ℂ) |
| 202 | 195, 201 | mulcld 10060 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) ∈ ℂ) |
| 203 | 202, 201 | addcld 10059 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) + ((𝑇↑𝑛) / 𝑛)) ∈ ℂ) |
| 204 | 105, 103 | fvmptg 6280 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧
(((-1↑(𝑛 − 1))
· ((𝑇↑𝑛) / 𝑛)) + ((𝑇↑𝑛) / 𝑛)) ∈ ℂ) → (𝐹‘𝑛) = (((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) + ((𝑇↑𝑛) / 𝑛))) |
| 205 | 190, 203,
204 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝐹‘𝑛) = (((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) + ((𝑇↑𝑛) / 𝑛))) |
| 206 | | eldifn 3733 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → ¬ 𝑛 ∈ ran 𝐺) |
| 207 | | 0nn0 11307 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℕ0 |
| 208 | | 1nn0 11308 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℕ0 |
| 209 | 148, 208 | num0h 11509 |
. . . . . . . . . . . . . . . 16
⊢ 1 = ((2
· 0) + 1) |
| 210 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 0 → (2 · 𝑗) = (2 ·
0)) |
| 211 | 210 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 0 → ((2 · 𝑗) + 1) = ((2 · 0) +
1)) |
| 212 | 211 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 0 → (1 = ((2 ·
𝑗) + 1) ↔ 1 = ((2
· 0) + 1))) |
| 213 | 212 | rspcev 3309 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℕ0 ∧ 1 = ((2 · 0) + 1)) → ∃𝑗 ∈ ℕ0 1 =
((2 · 𝑗) +
1)) |
| 214 | 207, 209,
213 | mp2an 708 |
. . . . . . . . . . . . . . 15
⊢
∃𝑗 ∈
ℕ0 1 = ((2 · 𝑗) + 1) |
| 215 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ |
| 216 | 147 | elrnmpt 5372 |
. . . . . . . . . . . . . . . 16
⊢ (1 ∈
ℂ → (1 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 1 = ((2 ·
𝑗) + 1))) |
| 217 | 215, 216 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 1 =
((2 · 𝑗) +
1)) |
| 218 | 214, 217 | mpbir 221 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ran 𝐺 |
| 219 | 218 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → 1 ∈ ran 𝐺) |
| 220 | | eleq1 2689 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (𝑛 ∈ ran 𝐺 ↔ 1 ∈ ran 𝐺)) |
| 221 | 219, 220 | mpbird 247 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → 𝑛 ∈ ran 𝐺) |
| 222 | 206, 221 | nsyl 135 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → ¬ 𝑛 = 1) |
| 223 | | nn1m1nn 11040 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (𝑛 = 1 ∨ (𝑛 − 1) ∈ ℕ)) |
| 224 | 189, 223 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → (𝑛 = 1 ∨ (𝑛 − 1) ∈ ℕ)) |
| 225 | 224 | ord 392 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → (¬ 𝑛 = 1 → (𝑛 − 1) ∈ ℕ)) |
| 226 | 222, 225 | mpd 15 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → (𝑛 − 1) ∈
ℕ) |
| 227 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗ℕ |
| 228 | | nfmpt1 4747 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗(𝑗 ∈ ℕ0 ↦ ((2
· 𝑗) +
1)) |
| 229 | 147, 228 | nfcxfr 2762 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗𝐺 |
| 230 | 229 | nfrn 5368 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗ran
𝐺 |
| 231 | 227, 230 | nfdif 3731 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗(ℕ ∖ ran 𝐺) |
| 232 | 231 | nfcri 2758 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗 𝑛 ∈ (ℕ ∖ ran
𝐺) |
| 233 | 147 | elrnmpt 5372 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → (𝑛 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 𝑛 = ((2 · 𝑗) + 1))) |
| 234 | 206, 233 | mtbid 314 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → ¬
∃𝑗 ∈
ℕ0 𝑛 = ((2
· 𝑗) +
1)) |
| 235 | | ralnex 2992 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑗 ∈
ℕ0 ¬ 𝑛
= ((2 · 𝑗) + 1)
↔ ¬ ∃𝑗
∈ ℕ0 𝑛 = ((2 · 𝑗) + 1)) |
| 236 | 234, 235 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → ∀𝑗 ∈ ℕ0
¬ 𝑛 = ((2 ·
𝑗) + 1)) |
| 237 | 236 | r19.21bi 2932 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (ℕ ∖ ran
𝐺) ∧ 𝑗 ∈ ℕ0) → ¬
𝑛 = ((2 · 𝑗) + 1)) |
| 238 | 237 | neqned 2801 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ (ℕ ∖ ran
𝐺) ∧ 𝑗 ∈ ℕ0) → 𝑛 ≠ ((2 · 𝑗) + 1)) |
| 239 | 238 | necomd 2849 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (ℕ ∖ ran
𝐺) ∧ 𝑗 ∈ ℕ0) → ((2
· 𝑗) + 1) ≠ 𝑛) |
| 240 | 239 | adantlr 751 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ (ℕ ∖ ran
𝐺) ∧ 𝑗 ∈ ℤ) ∧ 𝑗 ∈ ℕ0) → ((2
· 𝑗) + 1) ≠ 𝑛) |
| 241 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ (ℕ ∖ ran
𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0)
→ 𝑗 ∈
ℤ) |
| 242 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ (ℕ ∖ ran
𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0)
→ ¬ 𝑗 ∈
ℕ0) |
| 243 | 189 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ (ℕ ∖ ran
𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0)
→ 𝑛 ∈
ℕ) |
| 244 | 156 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → 2 ∈ ℝ) |
| 245 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → 𝑗 ∈ ℤ) |
| 246 | 245 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → 𝑗 ∈ ℝ) |
| 247 | 244, 246 | remulcld 10070 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → (2 · 𝑗) ∈ ℝ) |
| 248 | | 0red 10041 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → 0 ∈ ℝ) |
| 249 | | 1red 10055 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → 1 ∈ ℝ) |
| 250 | | 2cnd 11093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → 2 ∈ ℂ) |
| 251 | 246 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → 𝑗 ∈ ℂ) |
| 252 | 250, 251 | mulcomd 10061 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → (2 · 𝑗) = (𝑗 · 2)) |
| 253 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → ¬ 𝑗 ∈ ℕ0) |
| 254 | | elnn0z 11390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑗 ∈ ℕ0
↔ (𝑗 ∈ ℤ
∧ 0 ≤ 𝑗)) |
| 255 | 253, 254 | sylnib 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → ¬ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗)) |
| 256 | | nan 604 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → ¬ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗)) ↔ (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0)
∧ 𝑗 ∈ ℤ)
→ ¬ 0 ≤ 𝑗)) |
| 257 | 255, 256 | mpbi 220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) ∧ 𝑗 ∈ ℤ) → ¬ 0 ≤ 𝑗) |
| 258 | 257 | anabss1 855 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → ¬ 0 ≤ 𝑗) |
| 259 | 246, 248 | ltnled 10184 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → (𝑗 < 0 ↔ ¬ 0 ≤ 𝑗)) |
| 260 | 258, 259 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → 𝑗 < 0) |
| 261 | 163 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → 2 ∈ ℝ+) |
| 262 | 261 | rpregt0d 11878 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → (2 ∈ ℝ ∧ 0 < 2)) |
| 263 | | mulltgt0 39181 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑗 ∈ ℝ ∧ 𝑗 < 0) ∧ (2 ∈ ℝ
∧ 0 < 2)) → (𝑗
· 2) < 0) |
| 264 | 246, 260,
262, 263 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → (𝑗 · 2) < 0) |
| 265 | 252, 264 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → (2 · 𝑗) < 0) |
| 266 | 247, 248,
249, 265 | ltadd1dd 10638 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → ((2 · 𝑗) + 1) < (0 + 1)) |
| 267 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → 1 ∈ ℂ) |
| 268 | 267 | addid2d 10237 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → (0 + 1) = 1) |
| 269 | 266, 268 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → ((2 · 𝑗) + 1) < 1) |
| 270 | 247, 249 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → ((2 · 𝑗) + 1) ∈ ℝ) |
| 271 | 270, 249 | ltnled 10184 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → (((2 · 𝑗) + 1) < 1 ↔ ¬ 1 ≤ ((2
· 𝑗) +
1))) |
| 272 | 269, 271 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → ¬ 1 ≤ ((2 · 𝑗) + 1)) |
| 273 | | nnge1 11046 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((2
· 𝑗) + 1) ∈
ℕ → 1 ≤ ((2 · 𝑗) + 1)) |
| 274 | 272, 273 | nsyl 135 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) → ¬ ((2 · 𝑗) + 1) ∈ ℕ) |
| 275 | 274 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) ∧ 𝑛 ∈ ℕ) → ¬ ((2 ·
𝑗) + 1) ∈
ℕ) |
| 276 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ ℕ ∧ ((2
· 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) = 𝑛) |
| 277 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ ℕ ∧ ((2
· 𝑗) + 1) = 𝑛) → 𝑛 ∈ ℕ) |
| 278 | 276, 277 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ ℕ ∧ ((2
· 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) ∈
ℕ) |
| 279 | 278 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) ∧ 𝑛 ∈ ℕ) ∧ ((2 · 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) ∈ ℕ) |
| 280 | 275, 279 | mtand 691 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) ∧ 𝑛 ∈ ℕ) → ¬ ((2 ·
𝑗) + 1) = 𝑛) |
| 281 | 280 | neqned 2801 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑗 ∈ ℤ ∧ ¬
𝑗 ∈
ℕ0) ∧ 𝑛 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 𝑛) |
| 282 | 241, 242,
243, 281 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ (ℕ ∖ ran
𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0)
→ ((2 · 𝑗) + 1)
≠ 𝑛) |
| 283 | 240, 282 | pm2.61dan 832 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ (ℕ ∖ ran
𝐺) ∧ 𝑗 ∈ ℤ) → ((2 · 𝑗) + 1) ≠ 𝑛) |
| 284 | 283 | neneqd 2799 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ (ℕ ∖ ran
𝐺) ∧ 𝑗 ∈ ℤ) → ¬ ((2 ·
𝑗) + 1) = 𝑛) |
| 285 | 284 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → (𝑗 ∈ ℤ → ¬ ((2
· 𝑗) + 1) = 𝑛)) |
| 286 | 232, 285 | ralrimi 2957 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → ∀𝑗 ∈ ℤ ¬ ((2
· 𝑗) + 1) = 𝑛) |
| 287 | | ralnex 2992 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑗 ∈
ℤ ¬ ((2 · 𝑗) + 1) = 𝑛 ↔ ¬ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛) |
| 288 | 286, 287 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → ¬
∃𝑗 ∈ ℤ ((2
· 𝑗) + 1) = 𝑛) |
| 289 | 189 | nnzd 11481 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → 𝑛 ∈
ℤ) |
| 290 | | odd2np1 15065 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → (¬ 2
∥ 𝑛 ↔
∃𝑗 ∈ ℤ ((2
· 𝑗) + 1) = 𝑛)) |
| 291 | 289, 290 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → (¬ 2 ∥
𝑛 ↔ ∃𝑗 ∈ ℤ ((2 ·
𝑗) + 1) = 𝑛)) |
| 292 | 288, 291 | mtbird 315 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → ¬ ¬ 2
∥ 𝑛) |
| 293 | 292 | notnotrd 128 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → 2 ∥ 𝑛) |
| 294 | 189 | nncnd 11036 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → 𝑛 ∈
ℂ) |
| 295 | 294, 191 | npcand 10396 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → ((𝑛 − 1) + 1) = 𝑛) |
| 296 | 293, 295 | breqtrrd 4681 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → 2 ∥ ((𝑛 − 1) +
1)) |
| 297 | 193 | nn0zd 11480 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → (𝑛 − 1) ∈
ℤ) |
| 298 | | oddp1even 15068 |
. . . . . . . . . . . 12
⊢ ((𝑛 − 1) ∈ ℤ
→ (¬ 2 ∥ (𝑛
− 1) ↔ 2 ∥ ((𝑛 − 1) + 1))) |
| 299 | 297, 298 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → (¬ 2 ∥
(𝑛 − 1) ↔ 2
∥ ((𝑛 − 1) +
1))) |
| 300 | 296, 299 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → ¬ 2 ∥
(𝑛 −
1)) |
| 301 | | oexpneg 15069 |
. . . . . . . . . 10
⊢ ((1
∈ ℂ ∧ (𝑛
− 1) ∈ ℕ ∧ ¬ 2 ∥ (𝑛 − 1)) → (-1↑(𝑛 − 1)) = -(1↑(𝑛 − 1))) |
| 302 | 191, 226,
300, 301 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → (-1↑(𝑛 − 1)) = -(1↑(𝑛 − 1))) |
| 303 | | 1exp 12889 |
. . . . . . . . . . 11
⊢ ((𝑛 − 1) ∈ ℤ
→ (1↑(𝑛 −
1)) = 1) |
| 304 | 297, 303 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → (1↑(𝑛 − 1)) =
1) |
| 305 | 304 | negeqd 10275 |
. . . . . . . . 9
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → -(1↑(𝑛 − 1)) =
-1) |
| 306 | 302, 305 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝑛 ∈ (ℕ ∖ ran
𝐺) → (-1↑(𝑛 − 1)) =
-1) |
| 307 | 306 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1↑(𝑛 − 1)) =
-1) |
| 308 | 307 | oveq1d 6665 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) = (-1 · ((𝑇↑𝑛) / 𝑛))) |
| 309 | 308 | oveq1d 6665 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((-1↑(𝑛 − 1)) · ((𝑇↑𝑛) / 𝑛)) + ((𝑇↑𝑛) / 𝑛)) = ((-1 · ((𝑇↑𝑛) / 𝑛)) + ((𝑇↑𝑛) / 𝑛))) |
| 310 | 201 | mulm1d 10482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1 · ((𝑇↑𝑛) / 𝑛)) = -((𝑇↑𝑛) / 𝑛)) |
| 311 | 310 | oveq1d 6665 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1 · ((𝑇↑𝑛) / 𝑛)) + ((𝑇↑𝑛) / 𝑛)) = (-((𝑇↑𝑛) / 𝑛) + ((𝑇↑𝑛) / 𝑛))) |
| 312 | 201 | negcld 10379 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → -((𝑇↑𝑛) / 𝑛) ∈ ℂ) |
| 313 | 312, 201 | addcomd 10238 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-((𝑇↑𝑛) / 𝑛) + ((𝑇↑𝑛) / 𝑛)) = (((𝑇↑𝑛) / 𝑛) + -((𝑇↑𝑛) / 𝑛))) |
| 314 | 201 | negidd 10382 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((𝑇↑𝑛) / 𝑛) + -((𝑇↑𝑛) / 𝑛)) = 0) |
| 315 | 311, 313,
314 | 3eqtrd 2660 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1 · ((𝑇↑𝑛) / 𝑛)) + ((𝑇↑𝑛) / 𝑛)) = 0) |
| 316 | 205, 309,
315 | 3eqtrd 2660 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝐹‘𝑛) = 0) |
| 317 | 117, 116 | eqeltrd 2701 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℂ) |
| 318 | 103 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)) + ((𝑇↑𝑗) / 𝑗)))) |
| 319 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → 𝑗 = ((2 · 𝑘) + 1)) |
| 320 | 319 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (𝑗 − 1) = (((2 ·
𝑘) + 1) −
1)) |
| 321 | 320 | oveq2d 6666 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (-1↑(𝑗 − 1)) = (-1↑(((2
· 𝑘) + 1) −
1))) |
| 322 | 319 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (𝑇↑𝑗) = (𝑇↑((2 · 𝑘) + 1))) |
| 323 | 322, 319 | oveq12d 6668 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → ((𝑇↑𝑗) / 𝑗) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) |
| 324 | 321, 323 | oveq12d 6668 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → ((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)) = ((-1↑(((2 · 𝑘) + 1) − 1)) ·
((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))) |
| 325 | 324, 323 | oveq12d 6668 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)) + ((𝑇↑𝑗) / 𝑗)) = (((-1↑(((2 · 𝑘) + 1) − 1)) ·
((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))) |
| 326 | 148 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 2 ∈
ℕ0) |
| 327 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 328 | 326, 327 | nn0mulcld 11356 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (2
· 𝑘) ∈
ℕ0) |
| 329 | | nn0p1nn 11332 |
. . . . . . . 8
⊢ ((2
· 𝑘) ∈
ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ) |
| 330 | 328, 329 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((2
· 𝑘) + 1) ∈
ℕ) |
| 331 | 176 | negcld 10379 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ -1 ∈ ℂ) |
| 332 | 175, 176 | pncand 10393 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (((2 · 𝑘) +
1) − 1) = (2 · 𝑘)) |
| 333 | 148 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ 2 ∈ ℕ0) |
| 334 | 333, 172 | nn0mulcld 11356 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (2 · 𝑘)
∈ ℕ0) |
| 335 | 332, 334 | eqeltrd 2701 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (((2 · 𝑘) +
1) − 1) ∈ ℕ0) |
| 336 | 331, 335 | expcld 13008 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (-1↑(((2 · 𝑘) + 1) − 1)) ∈
ℂ) |
| 337 | 336 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(-1↑(((2 · 𝑘) +
1) − 1)) ∈ ℂ) |
| 338 | 14 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑇 ∈
ℂ) |
| 339 | 208 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 1 ∈
ℕ0) |
| 340 | 328, 339 | nn0addcld 11355 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((2
· 𝑘) + 1) ∈
ℕ0) |
| 341 | 338, 340 | expcld 13008 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑇↑((2 · 𝑘) + 1)) ∈
ℂ) |
| 342 | | 2cnd 11093 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 2 ∈
ℂ) |
| 343 | 174 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℂ) |
| 344 | 342, 343 | mulcld 10060 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (2
· 𝑘) ∈
ℂ) |
| 345 | | 1cnd 10056 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 1 ∈
ℂ) |
| 346 | 344, 345 | addcld 10059 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((2
· 𝑘) + 1) ∈
ℂ) |
| 347 | | 0red 10041 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ∈
ℝ) |
| 348 | 156 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 2 ∈
ℝ) |
| 349 | 158 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℝ) |
| 350 | 348, 349 | remulcld 10070 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (2
· 𝑘) ∈
ℝ) |
| 351 | | 1red 10055 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 1 ∈
ℝ) |
| 352 | | 0le2 11111 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
2 |
| 353 | 352 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤
2) |
| 354 | 327 | nn0ge0d 11354 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤
𝑘) |
| 355 | 348, 349,
353, 354 | mulge0d 10604 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤ (2
· 𝑘)) |
| 356 | | 0lt1 10550 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
| 357 | 356 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 <
1) |
| 358 | 350, 351,
355, 357 | addgegt0d 10601 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 <
((2 · 𝑘) +
1)) |
| 359 | 347, 358 | gtned 10172 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((2
· 𝑘) + 1) ≠
0) |
| 360 | 341, 346,
359 | divcld 10801 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) ∈
ℂ) |
| 361 | 337, 360 | mulcld 10060 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((-1↑(((2 · 𝑘)
+ 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ ℂ) |
| 362 | 361, 360 | addcld 10059 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(((-1↑(((2 · 𝑘)
+ 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ ℂ) |
| 363 | 318, 325,
330, 362 | fvmptd 6288 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘((2 · 𝑘) + 1)) = (((-1↑(((2
· 𝑘) + 1) −
1)) · ((𝑇↑((2
· 𝑘) + 1)) / ((2
· 𝑘) + 1))) +
((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))) |
| 364 | 332 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((2
· 𝑘) + 1) − 1)
= (2 · 𝑘)) |
| 365 | 364 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(-1↑(((2 · 𝑘) +
1) − 1)) = (-1↑(2 · 𝑘))) |
| 366 | | nn0z 11400 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
| 367 | | m1expeven 12907 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℤ →
(-1↑(2 · 𝑘)) =
1) |
| 368 | 366, 367 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (-1↑(2 · 𝑘)) = 1) |
| 369 | 368 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(-1↑(2 · 𝑘)) =
1) |
| 370 | 365, 369 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(-1↑(((2 · 𝑘) +
1) − 1)) = 1) |
| 371 | 370 | oveq1d 6665 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((-1↑(((2 · 𝑘)
+ 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (1 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))) |
| 372 | 360 | mulid2d 10058 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1
· ((𝑇↑((2
· 𝑘) + 1)) / ((2
· 𝑘) + 1))) =
((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) |
| 373 | 371, 372 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((-1↑(((2 · 𝑘)
+ 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) |
| 374 | 373 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(((-1↑(((2 · 𝑘)
+ 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))) |
| 375 | 360 | 2timesd 11275 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (2
· ((𝑇↑((2
· 𝑘) + 1)) / ((2
· 𝑘) + 1))) =
(((𝑇↑((2 ·
𝑘) + 1)) / ((2 ·
𝑘) + 1)) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))) |
| 376 | 341, 346,
359 | divrec2d 10805 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) = ((1 / ((2 ·
𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))) |
| 377 | 376 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (2
· ((𝑇↑((2
· 𝑘) + 1)) / ((2
· 𝑘) + 1))) = (2
· ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))))) |
| 378 | 374, 375,
377 | 3eqtr2d 2662 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(((-1↑(((2 · 𝑘)
+ 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (2 · ((1 / ((2 ·
𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))))) |
| 379 | 363, 378 | eqtr2d 2657 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (2
· ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))) = (𝐹‘((2 · 𝑘) + 1))) |
| 380 | | stirlinglem5.4 |
. . . . . . 7
⊢ 𝐻 = (𝑗 ∈ ℕ0 ↦ (2
· ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1))))) |
| 381 | 380 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐻 = (𝑗 ∈ ℕ0 ↦ (2
· ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))))) |
| 382 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘) |
| 383 | 382 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (2 · 𝑗) = (2 · 𝑘)) |
| 384 | 383 | oveq1d 6665 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1)) |
| 385 | 384 | oveq2d 6666 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (1 / ((2 · 𝑗) + 1)) = (1 / ((2 · 𝑘) + 1))) |
| 386 | 384 | oveq2d 6666 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝑇↑((2 · 𝑗) + 1)) = (𝑇↑((2 · 𝑘) + 1))) |
| 387 | 385, 386 | oveq12d 6668 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1))) = ((1 / ((2 ·
𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))) |
| 388 | 387 | oveq2d 6666 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))) = (2 · ((1 /
((2 · 𝑘) + 1))
· (𝑇↑((2
· 𝑘) +
1))))) |
| 389 | 346, 359 | reccld 10794 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 / ((2
· 𝑘) + 1)) ∈
ℂ) |
| 390 | 389, 341 | mulcld 10060 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((1 / ((2
· 𝑘) + 1)) ·
(𝑇↑((2 · 𝑘) + 1))) ∈
ℂ) |
| 391 | 342, 390 | mulcld 10060 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (2
· ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))) ∈ ℂ) |
| 392 | 381, 388,
327, 391 | fvmptd 6288 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))))) |
| 393 | 208 | a1i 11 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ 1 ∈ ℕ0) |
| 394 | 334, 393 | nn0addcld 11355 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ ((2 · 𝑘) + 1)
∈ ℕ0) |
| 395 | 168, 171,
172, 394 | fvmptd 6288 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (𝐺‘𝑘) = ((2 · 𝑘) + 1)) |
| 396 | 395 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = ((2 · 𝑘) + 1)) |
| 397 | 396 | fveq2d 6195 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝐺‘𝑘)) = (𝐹‘((2 · 𝑘) + 1))) |
| 398 | 379, 392,
397 | 3eqtr4d 2666 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
| 399 | 145, 1, 146, 2, 155, 188, 316, 317, 398 | isercoll2 14399 |
. . 3
⊢ (𝜑 → (seq0( + , 𝐻) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 −
𝑇))) ↔ seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 −
𝑇))))) |
| 400 | 144, 399 | mpbird 247 |
. 2
⊢ (𝜑 → seq0( + , 𝐻) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 −
𝑇)))) |
| 401 | 51, 13 | resubcld 10458 |
. . . 4
⊢ (𝜑 → (1 − 𝑇) ∈
ℝ) |
| 402 | 14 | subidd 10380 |
. . . . . 6
⊢ (𝜑 → (𝑇 − 𝑇) = 0) |
| 403 | 402 | eqcomd 2628 |
. . . . 5
⊢ (𝜑 → 0 = (𝑇 − 𝑇)) |
| 404 | 13, 51, 13, 139 | ltsub1dd 10639 |
. . . . 5
⊢ (𝜑 → (𝑇 − 𝑇) < (1 − 𝑇)) |
| 405 | 403, 404 | eqbrtrd 4675 |
. . . 4
⊢ (𝜑 → 0 < (1 − 𝑇)) |
| 406 | 401, 405 | elrpd 11869 |
. . 3
⊢ (𝜑 → (1 − 𝑇) ∈
ℝ+) |
| 407 | 133, 406 | relogdivd 24372 |
. 2
⊢ (𝜑 → (log‘((1 + 𝑇) / (1 − 𝑇))) = ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇)))) |
| 408 | 400, 407 | breqtrrd 4681 |
1
⊢ (𝜑 → seq0( + , 𝐻) ⇝ (log‘((1 + 𝑇) / (1 − 𝑇)))) |