MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayl2 Structured version   Visualization version   Unicode version

Theorem logtayl2 24408
Description: Power series expression for the logarithm. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypothesis
Ref Expression
logtayl2.s  |-  S  =  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )
Assertion
Ref Expression
logtayl2  |-  ( A  e.  S  ->  seq 1 (  +  , 
( k  e.  NN  |->  ( ( ( -u
1 ^ ( k  -  1 ) )  /  k )  x.  ( ( A  - 
1 ) ^ k
) ) ) )  ~~>  ( log `  A
) )
Distinct variable group:    A, k
Allowed substitution hint:    S( k)

Proof of Theorem logtayl2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 11408 . . 3  |-  ( A  e.  S  ->  1  e.  ZZ )
3 neg1cn 11124 . . . 4  |-  -u 1  e.  CC
43a1i 11 . . 3  |-  ( A  e.  S  ->  -u 1  e.  CC )
5 ax-1cn 9994 . . . . . 6  |-  1  e.  CC
6 logtayl2.s . . . . . . . . 9  |-  S  =  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )
76eleq2i 2693 . . . . . . . 8  |-  ( A  e.  S  <->  A  e.  ( 1 ( ball `  ( abs  o.  -  ) ) 1 ) )
8 cnxmet 22576 . . . . . . . . 9  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
9 1rp 11836 . . . . . . . . . 10  |-  1  e.  RR+
10 rpxr 11840 . . . . . . . . . 10  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
119, 10ax-mp 5 . . . . . . . . 9  |-  1  e.  RR*
12 elbl 22193 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  1  e.  CC  /\  1  e.  RR* )  ->  ( A  e.  ( 1 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( A  e.  CC  /\  ( 1 ( abs  o.  -  ) A )  <  1
) ) )
138, 5, 11, 12mp3an 1424 . . . . . . . 8  |-  ( A  e.  ( 1 (
ball `  ( abs  o. 
-  ) ) 1 )  <->  ( A  e.  CC  /\  ( 1 ( abs  o.  -  ) A )  <  1
) )
147, 13bitri 264 . . . . . . 7  |-  ( A  e.  S  <->  ( A  e.  CC  /\  ( 1 ( abs  o.  -  ) A )  <  1
) )
1514simplbi 476 . . . . . 6  |-  ( A  e.  S  ->  A  e.  CC )
16 subcl 10280 . . . . . 6  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
175, 15, 16sylancr 695 . . . . 5  |-  ( A  e.  S  ->  (
1  -  A )  e.  CC )
18 eqid 2622 . . . . . . . 8  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1918cnmetdval 22574 . . . . . . 7  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1 ( abs 
o.  -  ) A
)  =  ( abs `  ( 1  -  A
) ) )
205, 15, 19sylancr 695 . . . . . 6  |-  ( A  e.  S  ->  (
1 ( abs  o.  -  ) A )  =  ( abs `  (
1  -  A ) ) )
2114simprbi 480 . . . . . 6  |-  ( A  e.  S  ->  (
1 ( abs  o.  -  ) A )  <  1 )
2220, 21eqbrtrrd 4677 . . . . 5  |-  ( A  e.  S  ->  ( abs `  ( 1  -  A ) )  <  1 )
23 logtayl 24406 . . . . 5  |-  ( ( ( 1  -  A
)  e.  CC  /\  ( abs `  ( 1  -  A ) )  <  1 )  ->  seq 1 (  +  , 
( k  e.  NN  |->  ( ( ( 1  -  A ) ^
k )  /  k
) ) )  ~~>  -u ( log `  ( 1  -  ( 1  -  A
) ) ) )
2417, 22, 23syl2anc 693 . . . 4  |-  ( A  e.  S  ->  seq 1 (  +  , 
( k  e.  NN  |->  ( ( ( 1  -  A ) ^
k )  /  k
) ) )  ~~>  -u ( log `  ( 1  -  ( 1  -  A
) ) ) )
25 nncan 10310 . . . . . . 7  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  (
1  -  A ) )  =  A )
265, 15, 25sylancr 695 . . . . . 6  |-  ( A  e.  S  ->  (
1  -  ( 1  -  A ) )  =  A )
2726fveq2d 6195 . . . . 5  |-  ( A  e.  S  ->  ( log `  ( 1  -  ( 1  -  A
) ) )  =  ( log `  A
) )
2827negeqd 10275 . . . 4  |-  ( A  e.  S  ->  -u ( log `  ( 1  -  ( 1  -  A
) ) )  = 
-u ( log `  A
) )
2924, 28breqtrd 4679 . . 3  |-  ( A  e.  S  ->  seq 1 (  +  , 
( k  e.  NN  |->  ( ( ( 1  -  A ) ^
k )  /  k
) ) )  ~~>  -u ( log `  A ) )
30 oveq2 6658 . . . . . . 7  |-  ( k  =  n  ->  (
( 1  -  A
) ^ k )  =  ( ( 1  -  A ) ^
n ) )
31 id 22 . . . . . . 7  |-  ( k  =  n  ->  k  =  n )
3230, 31oveq12d 6668 . . . . . 6  |-  ( k  =  n  ->  (
( ( 1  -  A ) ^ k
)  /  k )  =  ( ( ( 1  -  A ) ^ n )  /  n ) )
33 eqid 2622 . . . . . 6  |-  ( k  e.  NN  |->  ( ( ( 1  -  A
) ^ k )  /  k ) )  =  ( k  e.  NN  |->  ( ( ( 1  -  A ) ^ k )  / 
k ) )
34 ovex 6678 . . . . . 6  |-  ( ( ( 1  -  A
) ^ n )  /  n )  e. 
_V
3532, 33, 34fvmpt 6282 . . . . 5  |-  ( n  e.  NN  ->  (
( k  e.  NN  |->  ( ( ( 1  -  A ) ^
k )  /  k
) ) `  n
)  =  ( ( ( 1  -  A
) ^ n )  /  n ) )
3635adantl 482 . . . 4  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( k  e.  NN  |->  ( ( ( 1  -  A ) ^ k )  / 
k ) ) `  n )  =  ( ( ( 1  -  A ) ^ n
)  /  n ) )
37 nnnn0 11299 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  NN0 )
38 expcl 12878 . . . . . 6  |-  ( ( ( 1  -  A
)  e.  CC  /\  n  e.  NN0 )  -> 
( ( 1  -  A ) ^ n
)  e.  CC )
3917, 37, 38syl2an 494 . . . . 5  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( 1  -  A ) ^ n
)  e.  CC )
40 nncn 11028 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  CC )
4140adantl 482 . . . . 5  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  n  e.  CC )
42 nnne0 11053 . . . . . 6  |-  ( n  e.  NN  ->  n  =/=  0 )
4342adantl 482 . . . . 5  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  n  =/=  0 )
4439, 41, 43divcld 10801 . . . 4  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( ( 1  -  A ) ^
n )  /  n
)  e.  CC )
4536, 44eqeltrd 2701 . . 3  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( k  e.  NN  |->  ( ( ( 1  -  A ) ^ k )  / 
k ) ) `  n )  e.  CC )
4639, 41, 43divnegd 10814 . . . . . 6  |-  ( ( A  e.  S  /\  n  e.  NN )  -> 
-u ( ( ( 1  -  A ) ^ n )  /  n )  =  (
-u ( ( 1  -  A ) ^
n )  /  n
) )
4744mulm1d 10482 . . . . . 6  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1  x.  ( ( ( 1  -  A ) ^
n )  /  n
) )  =  -u ( ( ( 1  -  A ) ^
n )  /  n
) )
4837adantl 482 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  n  e.  NN0 )
49 expcl 12878 . . . . . . . . . 10  |-  ( (
-u 1  e.  CC  /\  n  e.  NN0 )  ->  ( -u 1 ^ n )  e.  CC )
503, 48, 49sylancr 695 . . . . . . . . 9  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1 ^ n )  e.  CC )
51 subcl 10280 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  e.  CC )
5215, 5, 51sylancl 694 . . . . . . . . . 10  |-  ( A  e.  S  ->  ( A  -  1 )  e.  CC )
53 expcl 12878 . . . . . . . . . 10  |-  ( ( ( A  -  1 )  e.  CC  /\  n  e.  NN0 )  -> 
( ( A  - 
1 ) ^ n
)  e.  CC )
5452, 37, 53syl2an 494 . . . . . . . . 9  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( A  - 
1 ) ^ n
)  e.  CC )
5550, 54mulneg1d 10483 . . . . . . . 8  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u ( -u
1 ^ n )  x.  ( ( A  -  1 ) ^
n ) )  = 
-u ( ( -u
1 ^ n )  x.  ( ( A  -  1 ) ^
n ) ) )
563a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  n  e.  NN )  -> 
-u 1  e.  CC )
57 neg1ne0 11126 . . . . . . . . . . . 12  |-  -u 1  =/=  0
5857a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  n  e.  NN )  -> 
-u 1  =/=  0
)
59 nnz 11399 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  ZZ )
6059adantl 482 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  n  e.  ZZ )
6156, 58, 60expm1d 13018 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1 ^ ( n  -  1 ) )  =  ( ( -u 1 ^ n )  /  -u 1
) )
625a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  1  e.  CC )
63 ax-1ne0 10005 . . . . . . . . . . . 12  |-  1  =/=  0
6463a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  1  =/=  0 )
6550, 62, 64divneg2d 10815 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  n  e.  NN )  -> 
-u ( ( -u
1 ^ n )  /  1 )  =  ( ( -u 1 ^ n )  /  -u 1 ) )
6650div1d 10793 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( -u 1 ^ n )  / 
1 )  =  (
-u 1 ^ n
) )
6766negeqd 10275 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  n  e.  NN )  -> 
-u ( ( -u
1 ^ n )  /  1 )  = 
-u ( -u 1 ^ n ) )
6861, 65, 673eqtr2d 2662 . . . . . . . . 9  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1 ^ ( n  -  1 ) )  =  -u ( -u 1 ^ n
) )
6968oveq1d 6665 . . . . . . . 8  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( A  - 
1 ) ^ n
) )  =  (
-u ( -u 1 ^ n )  x.  ( ( A  - 
1 ) ^ n
) ) )
7052mulm1d 10482 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  ( -u 1  x.  ( A  -  1 ) )  =  -u ( A  - 
1 ) )
71 negsubdi2 10340 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  1  e.  CC )  -> 
-u ( A  - 
1 )  =  ( 1  -  A ) )
7215, 5, 71sylancl 694 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  -u ( A  -  1 )  =  ( 1  -  A ) )
7370, 72eqtr2d 2657 . . . . . . . . . . . 12  |-  ( A  e.  S  ->  (
1  -  A )  =  ( -u 1  x.  ( A  -  1 ) ) )
7473oveq1d 6665 . . . . . . . . . . 11  |-  ( A  e.  S  ->  (
( 1  -  A
) ^ n )  =  ( ( -u
1  x.  ( A  -  1 ) ) ^ n ) )
7574adantr 481 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( 1  -  A ) ^ n
)  =  ( (
-u 1  x.  ( A  -  1 ) ) ^ n ) )
76 mulexp 12899 . . . . . . . . . . . 12  |-  ( (
-u 1  e.  CC  /\  ( A  -  1 )  e.  CC  /\  n  e.  NN0 )  -> 
( ( -u 1  x.  ( A  -  1 ) ) ^ n
)  =  ( (
-u 1 ^ n
)  x.  ( ( A  -  1 ) ^ n ) ) )
773, 76mp3an1 1411 . . . . . . . . . . 11  |-  ( ( ( A  -  1 )  e.  CC  /\  n  e.  NN0 )  -> 
( ( -u 1  x.  ( A  -  1 ) ) ^ n
)  =  ( (
-u 1 ^ n
)  x.  ( ( A  -  1 ) ^ n ) ) )
7852, 37, 77syl2an 494 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( -u 1  x.  ( A  -  1 ) ) ^ n
)  =  ( (
-u 1 ^ n
)  x.  ( ( A  -  1 ) ^ n ) ) )
7975, 78eqtrd 2656 . . . . . . . . 9  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( 1  -  A ) ^ n
)  =  ( (
-u 1 ^ n
)  x.  ( ( A  -  1 ) ^ n ) ) )
8079negeqd 10275 . . . . . . . 8  |-  ( ( A  e.  S  /\  n  e.  NN )  -> 
-u ( ( 1  -  A ) ^
n )  =  -u ( ( -u 1 ^ n )  x.  ( ( A  - 
1 ) ^ n
) ) )
8155, 69, 803eqtr4d 2666 . . . . . . 7  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( A  - 
1 ) ^ n
) )  =  -u ( ( 1  -  A ) ^ n
) )
8281oveq1d 6665 . . . . . 6  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( A  -  1 ) ^
n ) )  /  n )  =  (
-u ( ( 1  -  A ) ^
n )  /  n
) )
8346, 47, 823eqtr4d 2666 . . . . 5  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1  x.  ( ( ( 1  -  A ) ^
n )  /  n
) )  =  ( ( ( -u 1 ^ ( n  - 
1 ) )  x.  ( ( A  - 
1 ) ^ n
) )  /  n
) )
84 nnm1nn0 11334 . . . . . . . 8  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
8584adantl 482 . . . . . . 7  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( n  -  1 )  e.  NN0 )
86 expcl 12878 . . . . . . 7  |-  ( (
-u 1  e.  CC  /\  ( n  -  1 )  e.  NN0 )  ->  ( -u 1 ^ ( n  -  1 ) )  e.  CC )
873, 85, 86sylancr 695 . . . . . 6  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1 ^ ( n  -  1 ) )  e.  CC )
8887, 54, 41, 43div23d 10838 . . . . 5  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( ( -u
1 ^ ( n  -  1 ) )  x.  ( ( A  -  1 ) ^
n ) )  /  n )  =  ( ( ( -u 1 ^ ( n  - 
1 ) )  /  n )  x.  (
( A  -  1 ) ^ n ) ) )
8983, 88eqtr2d 2657 . . . 4  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( ( -u
1 ^ ( n  -  1 ) )  /  n )  x.  ( ( A  - 
1 ) ^ n
) )  =  (
-u 1  x.  (
( ( 1  -  A ) ^ n
)  /  n ) ) )
90 oveq1 6657 . . . . . . . . 9  |-  ( k  =  n  ->  (
k  -  1 )  =  ( n  - 
1 ) )
9190oveq2d 6666 . . . . . . . 8  |-  ( k  =  n  ->  ( -u 1 ^ ( k  -  1 ) )  =  ( -u 1 ^ ( n  - 
1 ) ) )
9291, 31oveq12d 6668 . . . . . . 7  |-  ( k  =  n  ->  (
( -u 1 ^ (
k  -  1 ) )  /  k )  =  ( ( -u
1 ^ ( n  -  1 ) )  /  n ) )
93 oveq2 6658 . . . . . . 7  |-  ( k  =  n  ->  (
( A  -  1 ) ^ k )  =  ( ( A  -  1 ) ^
n ) )
9492, 93oveq12d 6668 . . . . . 6  |-  ( k  =  n  ->  (
( ( -u 1 ^ ( k  - 
1 ) )  / 
k )  x.  (
( A  -  1 ) ^ k ) )  =  ( ( ( -u 1 ^ ( n  -  1 ) )  /  n
)  x.  ( ( A  -  1 ) ^ n ) ) )
95 eqid 2622 . . . . . 6  |-  ( k  e.  NN  |->  ( ( ( -u 1 ^ ( k  -  1 ) )  /  k
)  x.  ( ( A  -  1 ) ^ k ) ) )  =  ( k  e.  NN  |->  ( ( ( -u 1 ^ ( k  -  1 ) )  /  k
)  x.  ( ( A  -  1 ) ^ k ) ) )
96 ovex 6678 . . . . . 6  |-  ( ( ( -u 1 ^ ( n  -  1 ) )  /  n
)  x.  ( ( A  -  1 ) ^ n ) )  e.  _V
9794, 95, 96fvmpt 6282 . . . . 5  |-  ( n  e.  NN  ->  (
( k  e.  NN  |->  ( ( ( -u
1 ^ ( k  -  1 ) )  /  k )  x.  ( ( A  - 
1 ) ^ k
) ) ) `  n )  =  ( ( ( -u 1 ^ ( n  - 
1 ) )  /  n )  x.  (
( A  -  1 ) ^ n ) ) )
9897adantl 482 . . . 4  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( k  e.  NN  |->  ( ( (
-u 1 ^ (
k  -  1 ) )  /  k )  x.  ( ( A  -  1 ) ^
k ) ) ) `
 n )  =  ( ( ( -u
1 ^ ( n  -  1 ) )  /  n )  x.  ( ( A  - 
1 ) ^ n
) ) )
9936oveq2d 6666 . . . 4  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( -u 1  x.  ( ( k  e.  NN  |->  ( ( ( 1  -  A ) ^ k )  / 
k ) ) `  n ) )  =  ( -u 1  x.  ( ( ( 1  -  A ) ^
n )  /  n
) ) )
10089, 98, 993eqtr4d 2666 . . 3  |-  ( ( A  e.  S  /\  n  e.  NN )  ->  ( ( k  e.  NN  |->  ( ( (
-u 1 ^ (
k  -  1 ) )  /  k )  x.  ( ( A  -  1 ) ^
k ) ) ) `
 n )  =  ( -u 1  x.  ( ( k  e.  NN  |->  ( ( ( 1  -  A ) ^ k )  / 
k ) ) `  n ) ) )
1011, 2, 4, 29, 45, 100isermulc2 14388 . 2  |-  ( A  e.  S  ->  seq 1 (  +  , 
( k  e.  NN  |->  ( ( ( -u
1 ^ ( k  -  1 ) )  /  k )  x.  ( ( A  - 
1 ) ^ k
) ) ) )  ~~>  ( -u 1  x.  -u ( log `  A
) ) )
1026dvlog2lem 24398 . . . . . . . 8  |-  S  C_  ( CC  \  ( -oo (,] 0 ) )
103102sseli 3599 . . . . . . 7  |-  ( A  e.  S  ->  A  e.  ( CC  \  ( -oo (,] 0 ) ) )
104 eqid 2622 . . . . . . . 8  |-  ( CC 
\  ( -oo (,] 0 ) )  =  ( CC  \  ( -oo (,] 0 ) )
105104logdmn0 24386 . . . . . . 7  |-  ( A  e.  ( CC  \ 
( -oo (,] 0 ) )  ->  A  =/=  0 )
106103, 105syl 17 . . . . . 6  |-  ( A  e.  S  ->  A  =/=  0 )
10715, 106logcld 24317 . . . . 5  |-  ( A  e.  S  ->  ( log `  A )  e.  CC )
108107negcld 10379 . . . 4  |-  ( A  e.  S  ->  -u ( log `  A )  e.  CC )
109108mulm1d 10482 . . 3  |-  ( A  e.  S  ->  ( -u 1  x.  -u ( log `  A ) )  =  -u -u ( log `  A
) )
110107negnegd 10383 . . 3  |-  ( A  e.  S  ->  -u -u ( log `  A )  =  ( log `  A
) )
111109, 110eqtrd 2656 . 2  |-  ( A  e.  S  ->  ( -u 1  x.  -u ( log `  A ) )  =  ( log `  A
) )
112101, 111breqtrd 4679 1  |-  ( A  e.  S  ->  seq 1 (  +  , 
( k  e.  NN  |->  ( ( ( -u
1 ^ ( k  -  1 ) )  /  k )  x.  ( ( A  - 
1 ) ^ k
) ) ) )  ~~>  ( log `  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   class class class wbr 4653    |-> cmpt 4729    o. ccom 5118   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   -oocmnf 10072   RR*cxr 10073    < clt 10074    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   RR+crp 11832   (,]cioc 12176    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215   *Metcxmt 19731   ballcbl 19733   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-ulm 24131  df-log 24303
This theorem is referenced by:  stirlinglem5  40295
  Copyright terms: Public domain W3C validator