Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broucube Structured version   Visualization version   Unicode version

Theorem broucube 33443
Description: Brouwer - or as Kulpa calls it, "Bohl-Brouwer" - fixed point theorem for the unit cube. Theorem on [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimir.i  |-  I  =  ( ( 0 [,] 1 )  ^m  (
1 ... N ) )
poimir.r  |-  R  =  ( Xt_ `  (
( 1 ... N
)  X.  { (
topGen `  ran  (,) ) } ) )
broucube.1  |-  ( ph  ->  F  e.  ( ( Rt  I )  Cn  ( Rt  I ) ) )
Assertion
Ref Expression
broucube  |-  ( ph  ->  E. c  e.  I 
c  =  ( F `
 c ) )
Distinct variable groups:    ph, c    F, c    I, c    N, c    R, c

Proof of Theorem broucube
Dummy variables  n  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . 3  |-  ( ph  ->  N  e.  NN )
2 poimir.i . . 3  |-  I  =  ( ( 0 [,] 1 )  ^m  (
1 ... N ) )
3 poimir.r . . 3  |-  R  =  ( Xt_ `  (
( 1 ... N
)  X.  { (
topGen `  ran  (,) ) } ) )
4 elmapfn 7880 . . . . . . . 8  |-  ( x  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  ->  x  Fn  ( 1 ... N
) )
54, 2eleq2s 2719 . . . . . . 7  |-  ( x  e.  I  ->  x  Fn  ( 1 ... N
) )
65adantl 482 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  x  Fn  ( 1 ... N
) )
7 broucube.1 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( ( Rt  I )  Cn  ( Rt  I ) ) )
8 ovex 6678 . . . . . . . . . . . . 13  |-  ( 1 ... N )  e. 
_V
9 retopon 22567 . . . . . . . . . . . . 13  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
103pttoponconst 21400 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... N
)  e.  _V  /\  ( topGen `  ran  (,) )  e.  (TopOn `  RR )
)  ->  R  e.  (TopOn `  ( RR  ^m  ( 1 ... N
) ) ) )
118, 9, 10mp2an 708 . . . . . . . . . . . 12  |-  R  e.  (TopOn `  ( RR  ^m  ( 1 ... N
) ) )
12 reex 10027 . . . . . . . . . . . . . 14  |-  RR  e.  _V
13 unitssre 12319 . . . . . . . . . . . . . 14  |-  ( 0 [,] 1 )  C_  RR
14 mapss 7900 . . . . . . . . . . . . . 14  |-  ( ( RR  e.  _V  /\  ( 0 [,] 1
)  C_  RR )  ->  ( ( 0 [,] 1 )  ^m  (
1 ... N ) ) 
C_  ( RR  ^m  ( 1 ... N
) ) )
1512, 13, 14mp2an 708 . . . . . . . . . . . . 13  |-  ( ( 0 [,] 1 )  ^m  ( 1 ... N ) )  C_  ( RR  ^m  (
1 ... N ) )
162, 15eqsstri 3635 . . . . . . . . . . . 12  |-  I  C_  ( RR  ^m  (
1 ... N ) )
17 resttopon 20965 . . . . . . . . . . . 12  |-  ( ( R  e.  (TopOn `  ( RR  ^m  (
1 ... N ) ) )  /\  I  C_  ( RR  ^m  (
1 ... N ) ) )  ->  ( Rt  I
)  e.  (TopOn `  I ) )
1811, 16, 17mp2an 708 . . . . . . . . . . 11  |-  ( Rt  I )  e.  (TopOn `  I )
1918toponunii 20721 . . . . . . . . . 10  |-  I  = 
U. ( Rt  I )
2019, 19cnf 21050 . . . . . . . . 9  |-  ( F  e.  ( ( Rt  I )  Cn  ( Rt  I ) )  ->  F : I --> I )
217, 20syl 17 . . . . . . . 8  |-  ( ph  ->  F : I --> I )
2221ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  I )
23 elmapfn 7880 . . . . . . . 8  |-  ( ( F `  x )  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  ->  ( F `  x )  Fn  ( 1 ... N
) )
2423, 2eleq2s 2719 . . . . . . 7  |-  ( ( F `  x )  e.  I  ->  ( F `  x )  Fn  ( 1 ... N
) )
2522, 24syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  Fn  ( 1 ... N
) )
26 ovexd 6680 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
1 ... N )  e. 
_V )
27 inidm 3822 . . . . . 6  |-  ( ( 1 ... N )  i^i  ( 1 ... N ) )  =  ( 1 ... N
)
28 eqidd 2623 . . . . . 6  |-  ( ( ( ph  /\  x  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
x `  n )  =  ( x `  n ) )
29 eqidd 2623 . . . . . 6  |-  ( ( ( ph  /\  x  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( F `  x
) `  n )  =  ( ( F `
 x ) `  n ) )
306, 25, 26, 26, 27, 28, 29offval 6904 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
x  oF  -  ( F `  x ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( x `  n )  -  ( ( F `
 x ) `  n ) ) ) )
3130mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( x  e.  I  |->  ( x  oF  -  ( F `  x ) ) )  =  ( x  e.  I  |->  ( n  e.  ( 1 ... N
)  |->  ( ( x `
 n )  -  ( ( F `  x ) `  n
) ) ) ) )
3218a1i 11 . . . . 5  |-  ( ph  ->  ( Rt  I )  e.  (TopOn `  I ) )
33 ovexd 6680 . . . . 5  |-  ( ph  ->  ( 1 ... N
)  e.  _V )
34 retop 22565 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  e.  Top
3534fconst6 6095 . . . . . 6  |-  ( ( 1 ... N )  X.  { ( topGen ` 
ran  (,) ) } ) : ( 1 ... N ) --> Top
3635a1i 11 . . . . 5  |-  ( ph  ->  ( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) : ( 1 ... N ) --> Top )
3718a1i 11 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  ( Rt  I )  e.  (TopOn `  I ) )
38 eqid 2622 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
3938cnfldtop 22587 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  e.  Top
40 cnrest2r 21091 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( Rt  I )  Cn  (
( TopOpen ` fld )t  RR ) )  C_  ( ( Rt  I )  Cn  ( TopOpen ` fld ) ) )
4139, 40ax-mp 5 . . . . . . . . . 10  |-  ( ( Rt  I )  Cn  (
( TopOpen ` fld )t  RR ) )  C_  ( ( Rt  I )  Cn  ( TopOpen ` fld ) )
42 resmpt 5449 . . . . . . . . . . . . 13  |-  ( I 
C_  ( RR  ^m  ( 1 ... N
) )  ->  (
( x  e.  ( RR  ^m  ( 1 ... N ) ) 
|->  ( x `  n
) )  |`  I )  =  ( x  e.  I  |->  ( x `  n ) ) )
4316, 42ax-mp 5 . . . . . . . . . . . 12  |-  ( ( x  e.  ( RR 
^m  ( 1 ... N ) )  |->  ( x `  n ) )  |`  I )  =  ( x  e.  I  |->  ( x `  n ) )
4411toponunii 20721 . . . . . . . . . . . . . . 15  |-  ( RR 
^m  ( 1 ... N ) )  = 
U. R
4544, 3ptpjcn 21414 . . . . . . . . . . . . . 14  |-  ( ( ( 1 ... N
)  e.  _V  /\  ( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) : ( 1 ... N ) --> Top  /\  n  e.  ( 1 ... N
) )  ->  (
x  e.  ( RR 
^m  ( 1 ... N ) )  |->  ( x `  n ) )  e.  ( R  Cn  ( ( ( 1 ... N )  X.  { ( topGen ` 
ran  (,) ) } ) `
 n ) ) )
468, 35, 45mp3an12 1414 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... N )  ->  (
x  e.  ( RR 
^m  ( 1 ... N ) )  |->  ( x `  n ) )  e.  ( R  Cn  ( ( ( 1 ... N )  X.  { ( topGen ` 
ran  (,) ) } ) `
 n ) ) )
4744cnrest 21089 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( RR  ^m  ( 1 ... N ) ) 
|->  ( x `  n
) )  e.  ( R  Cn  ( ( ( 1 ... N
)  X.  { (
topGen `  ran  (,) ) } ) `  n
) )  /\  I  C_  ( RR  ^m  (
1 ... N ) ) )  ->  ( (
x  e.  ( RR 
^m  ( 1 ... N ) )  |->  ( x `  n ) )  |`  I )  e.  ( ( Rt  I )  Cn  ( ( ( 1 ... N )  X.  { ( topGen ` 
ran  (,) ) } ) `
 n ) ) )
4846, 16, 47sylancl 694 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... N )  ->  (
( x  e.  ( RR  ^m  ( 1 ... N ) ) 
|->  ( x `  n
) )  |`  I )  e.  ( ( Rt  I )  Cn  ( ( ( 1 ... N
)  X.  { (
topGen `  ran  (,) ) } ) `  n
) ) )
4943, 48syl5eqelr 2706 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... N )  ->  (
x  e.  I  |->  ( x `  n ) )  e.  ( ( Rt  I )  Cn  (
( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) `  n
) ) )
50 fvex 6201 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  e.  _V
5150fvconst2 6469 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... N )  ->  (
( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) `  n
)  =  ( topGen ` 
ran  (,) ) )
5238tgioo2 22606 . . . . . . . . . . . . 13  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
5351, 52syl6eq 2672 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... N )  ->  (
( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) `  n
)  =  ( (
TopOpen ` fld )t  RR ) )
5453oveq2d 6666 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... N )  ->  (
( Rt  I )  Cn  (
( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) `  n
) )  =  ( ( Rt  I )  Cn  (
( TopOpen ` fld )t  RR ) ) )
5549, 54eleqtrd 2703 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... N )  ->  (
x  e.  I  |->  ( x `  n ) )  e.  ( ( Rt  I )  Cn  (
( TopOpen ` fld )t  RR ) ) )
5641, 55sseldi 3601 . . . . . . . . 9  |-  ( n  e.  ( 1 ... N )  ->  (
x  e.  I  |->  ( x `  n ) )  e.  ( ( Rt  I )  Cn  ( TopOpen
` fld
) ) )
5756adantl 482 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
x  e.  I  |->  ( x `  n ) )  e.  ( ( Rt  I )  Cn  ( TopOpen
` fld
) ) )
5821feqmptd 6249 . . . . . . . . . . 11  |-  ( ph  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
5958, 7eqeltrrd 2702 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  I  |->  ( F `  x
) )  e.  ( ( Rt  I )  Cn  ( Rt  I ) ) )
6059adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
x  e.  I  |->  ( F `  x ) )  e.  ( ( Rt  I )  Cn  ( Rt  I ) ) )
61 fveq1 6190 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
x `  n )  =  ( z `  n ) )
6261cbvmptv 4750 . . . . . . . . . 10  |-  ( x  e.  I  |->  ( x `
 n ) )  =  ( z  e.  I  |->  ( z `  n ) )
6362, 57syl5eqelr 2706 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
z  e.  I  |->  ( z `  n ) )  e.  ( ( Rt  I )  Cn  ( TopOpen
` fld
) ) )
64 fveq1 6190 . . . . . . . . 9  |-  ( z  =  ( F `  x )  ->  (
z `  n )  =  ( ( F `
 x ) `  n ) )
6537, 60, 37, 63, 64cnmpt11 21466 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
x  e.  I  |->  ( ( F `  x
) `  n )
)  e.  ( ( Rt  I )  Cn  ( TopOpen
` fld
) ) )
6638subcn 22669 . . . . . . . . 9  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
6766a1i 11 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
6837, 57, 65, 67cnmpt12f 21469 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
x  e.  I  |->  ( ( x `  n
)  -  ( ( F `  x ) `
 n ) ) )  e.  ( ( Rt  I )  Cn  ( TopOpen
` fld
) ) )
69 elmapi 7879 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  ->  x : ( 1 ... N ) --> ( 0 [,] 1 ) )
7069, 2eleq2s 2719 . . . . . . . . . . . . . 14  |-  ( x  e.  I  ->  x : ( 1 ... N ) --> ( 0 [,] 1 ) )
7170ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( ( x  e.  I  /\  n  e.  ( 1 ... N ) )  ->  ( x `  n )  e.  ( 0 [,] 1 ) )
7213, 71sseldi 3601 . . . . . . . . . . . 12  |-  ( ( x  e.  I  /\  n  e.  ( 1 ... N ) )  ->  ( x `  n )  e.  RR )
7372adantll 750 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
x `  n )  e.  RR )
74 elmapi 7879 . . . . . . . . . . . . . . 15  |-  ( ( F `  x )  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  ->  ( F `  x ) : ( 1 ... N ) --> ( 0 [,] 1 ) )
7574, 2eleq2s 2719 . . . . . . . . . . . . . 14  |-  ( ( F `  x )  e.  I  ->  ( F `  x ) : ( 1 ... N ) --> ( 0 [,] 1 ) )
7622, 75syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x ) : ( 1 ... N ) --> ( 0 [,] 1 ) )
7776ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( F `  x
) `  n )  e.  ( 0 [,] 1
) )
7813, 77sseldi 3601 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( F `  x
) `  n )  e.  RR )
7973, 78resubcld 10458 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( x `  n
)  -  ( ( F `  x ) `
 n ) )  e.  RR )
8079an32s 846 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 1 ... N
) )  /\  x  e.  I )  ->  (
( x `  n
)  -  ( ( F `  x ) `
 n ) )  e.  RR )
81 eqid 2622 . . . . . . . . 9  |-  ( x  e.  I  |->  ( ( x `  n )  -  ( ( F `
 x ) `  n ) ) )  =  ( x  e.  I  |->  ( ( x `
 n )  -  ( ( F `  x ) `  n
) ) )
8280, 81fmptd 6385 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
x  e.  I  |->  ( ( x `  n
)  -  ( ( F `  x ) `
 n ) ) ) : I --> RR )
83 frn 6053 . . . . . . . 8  |-  ( ( x  e.  I  |->  ( ( x `  n
)  -  ( ( F `  x ) `
 n ) ) ) : I --> RR  ->  ran  ( x  e.  I  |->  ( ( x `  n )  -  (
( F `  x
) `  n )
) )  C_  RR )
8438cnfldtopon 22586 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
85 ax-resscn 9993 . . . . . . . . 9  |-  RR  C_  CC
86 cnrest2 21090 . . . . . . . . 9  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( x  e.  I  |->  ( ( x `  n )  -  (
( F `  x
) `  n )
) )  C_  RR  /\  RR  C_  CC )  ->  ( ( x  e.  I  |->  ( ( x `
 n )  -  ( ( F `  x ) `  n
) ) )  e.  ( ( Rt  I )  Cn  ( TopOpen ` fld ) )  <->  ( x  e.  I  |->  ( ( x `  n )  -  ( ( F `
 x ) `  n ) ) )  e.  ( ( Rt  I )  Cn  ( (
TopOpen ` fld )t  RR ) ) ) )
8784, 85, 86mp3an13 1415 . . . . . . . 8  |-  ( ran  ( x  e.  I  |->  ( ( x `  n )  -  (
( F `  x
) `  n )
) )  C_  RR  ->  ( ( x  e.  I  |->  ( ( x `
 n )  -  ( ( F `  x ) `  n
) ) )  e.  ( ( Rt  I )  Cn  ( TopOpen ` fld ) )  <->  ( x  e.  I  |->  ( ( x `  n )  -  ( ( F `
 x ) `  n ) ) )  e.  ( ( Rt  I )  Cn  ( (
TopOpen ` fld )t  RR ) ) ) )
8882, 83, 873syl 18 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( x  e.  I  |->  ( ( x `  n )  -  (
( F `  x
) `  n )
) )  e.  ( ( Rt  I )  Cn  ( TopOpen
` fld
) )  <->  ( x  e.  I  |->  ( ( x `  n )  -  ( ( F `
 x ) `  n ) ) )  e.  ( ( Rt  I )  Cn  ( (
TopOpen ` fld )t  RR ) ) ) )
8968, 88mpbid 222 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
x  e.  I  |->  ( ( x `  n
)  -  ( ( F `  x ) `
 n ) ) )  e.  ( ( Rt  I )  Cn  (
( TopOpen ` fld )t  RR ) ) )
9054adantl 482 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( Rt  I )  Cn  (
( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) `  n
) )  =  ( ( Rt  I )  Cn  (
( TopOpen ` fld )t  RR ) ) )
9189, 90eleqtrrd 2704 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
x  e.  I  |->  ( ( x `  n
)  -  ( ( F `  x ) `
 n ) ) )  e.  ( ( Rt  I )  Cn  (
( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) `  n
) ) )
923, 32, 33, 36, 91ptcn 21430 . . . 4  |-  ( ph  ->  ( x  e.  I  |->  ( n  e.  ( 1 ... N ) 
|->  ( ( x `  n )  -  (
( F `  x
) `  n )
) ) )  e.  ( ( Rt  I )  Cn  R ) )
9331, 92eqeltrd 2701 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( x  oF  -  ( F `  x ) ) )  e.  ( ( Rt  I )  Cn  R ) )
94 simpr2 1068 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  0 ) )  ->  z  e.  I )
95 id 22 . . . . . . . . 9  |-  ( x  =  z  ->  x  =  z )
96 fveq2 6191 . . . . . . . . 9  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
9795, 96oveq12d 6668 . . . . . . . 8  |-  ( x  =  z  ->  (
x  oF  -  ( F `  x ) )  =  ( z  oF  -  ( F `  z )
) )
98 eqid 2622 . . . . . . . 8  |-  ( x  e.  I  |->  ( x  oF  -  ( F `  x )
) )  =  ( x  e.  I  |->  ( x  oF  -  ( F `  x ) ) )
99 ovex 6678 . . . . . . . 8  |-  ( z  oF  -  ( F `  z )
)  e.  _V
10097, 98, 99fvmpt 6282 . . . . . . 7  |-  ( z  e.  I  ->  (
( x  e.  I  |->  ( x  oF  -  ( F `  x ) ) ) `
 z )  =  ( z  oF  -  ( F `  z ) ) )
101100fveq1d 6193 . . . . . 6  |-  ( z  e.  I  ->  (
( ( x  e.  I  |->  ( x  oF  -  ( F `
 x ) ) ) `  z ) `
 n )  =  ( ( z  oF  -  ( F `
 z ) ) `
 n ) )
10294, 101syl 17 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  0 ) )  ->  (
( ( x  e.  I  |->  ( x  oF  -  ( F `
 x ) ) ) `  z ) `
 n )  =  ( ( z  oF  -  ( F `
 z ) ) `
 n ) )
103 elmapfn 7880 . . . . . . . . . . . 12  |-  ( z  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  ->  z  Fn  ( 1 ... N
) )
104103, 2eleq2s 2719 . . . . . . . . . . 11  |-  ( z  e.  I  ->  z  Fn  ( 1 ... N
) )
105104adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z `  n )  =  0 )  /\  z  e.  I )  ->  z  Fn  ( 1 ... N ) )
10621ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  I )  ->  ( F `  z )  e.  I )
107 elmapfn 7880 . . . . . . . . . . . . 13  |-  ( ( F `  z )  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  ->  ( F `  z )  Fn  ( 1 ... N
) )
108107, 2eleq2s 2719 . . . . . . . . . . . 12  |-  ( ( F `  z )  e.  I  ->  ( F `  z )  Fn  ( 1 ... N
) )
109106, 108syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  I )  ->  ( F `  z )  Fn  ( 1 ... N
) )
110109adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z `  n )  =  0 )  /\  z  e.  I )  ->  ( F `  z
)  Fn  ( 1 ... N ) )
111 ovexd 6680 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z `  n )  =  0 )  /\  z  e.  I )  ->  ( 1 ... N
)  e.  _V )
112 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( z `  n
)  =  0 )  /\  z  e.  I
)  /\  n  e.  ( 1 ... N
) )  ->  (
z `  n )  =  0 )
113 eqidd 2623 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( z `  n
)  =  0 )  /\  z  e.  I
)  /\  n  e.  ( 1 ... N
) )  ->  (
( F `  z
) `  n )  =  ( ( F `
 z ) `  n ) )
114105, 110, 111, 111, 27, 112, 113ofval 6906 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( z `  n
)  =  0 )  /\  z  e.  I
)  /\  n  e.  ( 1 ... N
) )  ->  (
( z  oF  -  ( F `  z ) ) `  n )  =  ( 0  -  ( ( F `  z ) `
 n ) ) )
115 df-neg 10269 . . . . . . . . 9  |-  -u (
( F `  z
) `  n )  =  ( 0  -  ( ( F `  z ) `  n
) )
116114, 115syl6eqr 2674 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( z `  n
)  =  0 )  /\  z  e.  I
)  /\  n  e.  ( 1 ... N
) )  ->  (
( z  oF  -  ( F `  z ) ) `  n )  =  -u ( ( F `  z ) `  n
) )
117116exp41 638 . . . . . . 7  |-  ( ph  ->  ( ( z `  n )  =  0  ->  ( z  e.  I  ->  ( n  e.  ( 1 ... N
)  ->  ( (
z  oF  -  ( F `  z ) ) `  n )  =  -u ( ( F `
 z ) `  n ) ) ) ) )
118117com24 95 . . . . . 6  |-  ( ph  ->  ( n  e.  ( 1 ... N )  ->  ( z  e.  I  ->  ( (
z `  n )  =  0  ->  (
( z  oF  -  ( F `  z ) ) `  n )  =  -u ( ( F `  z ) `  n
) ) ) ) )
1191183imp2 1282 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  0 ) )  ->  (
( z  oF  -  ( F `  z ) ) `  n )  =  -u ( ( F `  z ) `  n
) )
120102, 119eqtrd 2656 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  0 ) )  ->  (
( ( x  e.  I  |->  ( x  oF  -  ( F `
 x ) ) ) `  z ) `
 n )  = 
-u ( ( F `
 z ) `  n ) )
121 elmapi 7879 . . . . . . . . . . . 12  |-  ( ( F `  z )  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  ->  ( F `  z ) : ( 1 ... N ) --> ( 0 [,] 1 ) )
122121, 2eleq2s 2719 . . . . . . . . . . 11  |-  ( ( F `  z )  e.  I  ->  ( F `  z ) : ( 1 ... N ) --> ( 0 [,] 1 ) )
123106, 122syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  I )  ->  ( F `  z ) : ( 1 ... N ) --> ( 0 [,] 1 ) )
124123ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( F `  z
) `  n )  e.  ( 0 [,] 1
) )
125 0xr 10086 . . . . . . . . . 10  |-  0  e.  RR*
126 1re 10039 . . . . . . . . . . 11  |-  1  e.  RR
127126rexri 10097 . . . . . . . . . 10  |-  1  e.  RR*
128 iccgelb 12230 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  ( ( F `  z ) `
 n )  e.  ( 0 [,] 1
) )  ->  0  <_  ( ( F `  z ) `  n
) )
129125, 127, 128mp3an12 1414 . . . . . . . . 9  |-  ( ( ( F `  z
) `  n )  e.  ( 0 [,] 1
)  ->  0  <_  ( ( F `  z
) `  n )
)
130124, 129syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  0  <_  ( ( F `  z ) `  n
) )
13113, 124sseldi 3601 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( F `  z
) `  n )  e.  RR )
132131le0neg2d 10600 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
0  <_  ( ( F `  z ) `  n )  <->  -u ( ( F `  z ) `
 n )  <_ 
0 ) )
133130, 132mpbid 222 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  -u (
( F `  z
) `  n )  <_  0 )
134133an32s 846 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( 1 ... N
) )  /\  z  e.  I )  ->  -u (
( F `  z
) `  n )  <_  0 )
135134anasss 679 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I ) )  ->  -u ( ( F `  z ) `  n
)  <_  0 )
1361353adantr3 1222 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  0 ) )  ->  -u (
( F `  z
) `  n )  <_  0 )
137120, 136eqbrtrd 4675 . . 3  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  0 ) )  ->  (
( ( x  e.  I  |->  ( x  oF  -  ( F `
 x ) ) ) `  z ) `
 n )  <_ 
0 )
138 iccleub 12229 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  ( ( F `  z ) `
 n )  e.  ( 0 [,] 1
) )  ->  (
( F `  z
) `  n )  <_  1 )
139125, 127, 138mp3an12 1414 . . . . . . . . 9  |-  ( ( ( F `  z
) `  n )  e.  ( 0 [,] 1
)  ->  ( ( F `  z ) `  n )  <_  1
)
140124, 139syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( F `  z
) `  n )  <_  1 )
141 1red 10055 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  1  e.  RR )
142141, 131subge0d 10617 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
0  <_  ( 1  -  ( ( F `
 z ) `  n ) )  <->  ( ( F `  z ) `  n )  <_  1
) )
143140, 142mpbird 247 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  0  <_  ( 1  -  (
( F `  z
) `  n )
) )
144143an32s 846 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( 1 ... N
) )  /\  z  e.  I )  ->  0  <_  ( 1  -  (
( F `  z
) `  n )
) )
145144anasss 679 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I ) )  -> 
0  <_  ( 1  -  ( ( F `
 z ) `  n ) ) )
1461453adantr3 1222 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  1 ) )  ->  0  <_  ( 1  -  (
( F `  z
) `  n )
) )
147 simpr2 1068 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  1 ) )  ->  z  e.  I )
148147, 101syl 17 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  1 ) )  ->  (
( ( x  e.  I  |->  ( x  oF  -  ( F `
 x ) ) ) `  z ) `
 n )  =  ( ( z  oF  -  ( F `
 z ) ) `
 n ) )
149104adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z `  n )  =  1 )  /\  z  e.  I )  ->  z  Fn  ( 1 ... N ) )
150109adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z `  n )  =  1 )  /\  z  e.  I )  ->  ( F `  z
)  Fn  ( 1 ... N ) )
151 ovexd 6680 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z `  n )  =  1 )  /\  z  e.  I )  ->  ( 1 ... N
)  e.  _V )
152 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( z `  n
)  =  1 )  /\  z  e.  I
)  /\  n  e.  ( 1 ... N
) )  ->  (
z `  n )  =  1 )
153 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( z `  n
)  =  1 )  /\  z  e.  I
)  /\  n  e.  ( 1 ... N
) )  ->  (
( F `  z
) `  n )  =  ( ( F `
 z ) `  n ) )
154149, 150, 151, 151, 27, 152, 153ofval 6906 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( z `  n
)  =  1 )  /\  z  e.  I
)  /\  n  e.  ( 1 ... N
) )  ->  (
( z  oF  -  ( F `  z ) ) `  n )  =  ( 1  -  ( ( F `  z ) `
 n ) ) )
155154exp41 638 . . . . . . 7  |-  ( ph  ->  ( ( z `  n )  =  1  ->  ( z  e.  I  ->  ( n  e.  ( 1 ... N
)  ->  ( (
z  oF  -  ( F `  z ) ) `  n )  =  ( 1  -  ( ( F `  z ) `  n
) ) ) ) ) )
156155com24 95 . . . . . 6  |-  ( ph  ->  ( n  e.  ( 1 ... N )  ->  ( z  e.  I  ->  ( (
z `  n )  =  1  ->  (
( z  oF  -  ( F `  z ) ) `  n )  =  ( 1  -  ( ( F `  z ) `
 n ) ) ) ) ) )
1571563imp2 1282 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  1 ) )  ->  (
( z  oF  -  ( F `  z ) ) `  n )  =  ( 1  -  ( ( F `  z ) `
 n ) ) )
158148, 157eqtrd 2656 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  1 ) )  ->  (
( ( x  e.  I  |->  ( x  oF  -  ( F `
 x ) ) ) `  z ) `
 n )  =  ( 1  -  (
( F `  z
) `  n )
) )
159146, 158breqtrrd 4681 . . 3  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  1 ) )  ->  0  <_  ( ( ( x  e.  I  |->  ( x  oF  -  ( F `  x )
) ) `  z
) `  n )
)
1601, 2, 3, 93, 137, 159poimir 33442 . 2  |-  ( ph  ->  E. c  e.  I 
( ( x  e.  I  |->  ( x  oF  -  ( F `
 x ) ) ) `  c )  =  ( ( 1 ... N )  X. 
{ 0 } ) )
161 id 22 . . . . . . . 8  |-  ( x  =  c  ->  x  =  c )
162 fveq2 6191 . . . . . . . 8  |-  ( x  =  c  ->  ( F `  x )  =  ( F `  c ) )
163161, 162oveq12d 6668 . . . . . . 7  |-  ( x  =  c  ->  (
x  oF  -  ( F `  x ) )  =  ( c  oF  -  ( F `  c )
) )
164 ovex 6678 . . . . . . 7  |-  ( c  oF  -  ( F `  c )
)  e.  _V
165163, 98, 164fvmpt 6282 . . . . . 6  |-  ( c  e.  I  ->  (
( x  e.  I  |->  ( x  oF  -  ( F `  x ) ) ) `
 c )  =  ( c  oF  -  ( F `  c ) ) )
166165adantl 482 . . . . 5  |-  ( (
ph  /\  c  e.  I )  ->  (
( x  e.  I  |->  ( x  oF  -  ( F `  x ) ) ) `
 c )  =  ( c  oF  -  ( F `  c ) ) )
167166eqeq1d 2624 . . . 4  |-  ( (
ph  /\  c  e.  I )  ->  (
( ( x  e.  I  |->  ( x  oF  -  ( F `
 x ) ) ) `  c )  =  ( ( 1 ... N )  X. 
{ 0 } )  <-> 
( c  oF  -  ( F `  c ) )  =  ( ( 1 ... N )  X.  {
0 } ) ) )
168 elmapfn 7880 . . . . . . . . . . 11  |-  ( c  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  ->  c  Fn  ( 1 ... N
) )
169168, 2eleq2s 2719 . . . . . . . . . 10  |-  ( c  e.  I  ->  c  Fn  ( 1 ... N
) )
170169adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  I )  ->  c  Fn  ( 1 ... N
) )
17121ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  I )  ->  ( F `  c )  e.  I )
172 elmapfn 7880 . . . . . . . . . . 11  |-  ( ( F `  c )  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  ->  ( F `  c )  Fn  ( 1 ... N
) )
173172, 2eleq2s 2719 . . . . . . . . . 10  |-  ( ( F `  c )  e.  I  ->  ( F `  c )  Fn  ( 1 ... N
) )
174171, 173syl 17 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  I )  ->  ( F `  c )  Fn  ( 1 ... N
) )
175 ovexd 6680 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  I )  ->  (
1 ... N )  e. 
_V )
176 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
c `  n )  =  ( c `  n ) )
177 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( F `  c
) `  n )  =  ( ( F `
 c ) `  n ) )
178170, 174, 175, 175, 27, 176, 177ofval 6906 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( c  oF  -  ( F `  c ) ) `  n )  =  ( ( c `  n
)  -  ( ( F `  c ) `
 n ) ) )
179 c0ex 10034 . . . . . . . . . 10  |-  0  e.  _V
180179fvconst2 6469 . . . . . . . . 9  |-  ( n  e.  ( 1 ... N )  ->  (
( ( 1 ... N )  X.  {
0 } ) `  n )  =  0 )
181180adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1 ... N )  X.  {
0 } ) `  n )  =  0 )
182178, 181eqeq12d 2637 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( c  oF  -  ( F `
 c ) ) `
 n )  =  ( ( ( 1 ... N )  X. 
{ 0 } ) `
 n )  <->  ( (
c `  n )  -  ( ( F `
 c ) `  n ) )  =  0 ) )
18313, 85sstri 3612 . . . . . . . . . 10  |-  ( 0 [,] 1 )  C_  CC
184 elmapi 7879 . . . . . . . . . . . 12  |-  ( c  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  ->  c : ( 1 ... N ) --> ( 0 [,] 1 ) )
185184, 2eleq2s 2719 . . . . . . . . . . 11  |-  ( c  e.  I  ->  c : ( 1 ... N ) --> ( 0 [,] 1 ) )
186185ffvelrnda 6359 . . . . . . . . . 10  |-  ( ( c  e.  I  /\  n  e.  ( 1 ... N ) )  ->  ( c `  n )  e.  ( 0 [,] 1 ) )
187183, 186sseldi 3601 . . . . . . . . 9  |-  ( ( c  e.  I  /\  n  e.  ( 1 ... N ) )  ->  ( c `  n )  e.  CC )
188187adantll 750 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
c `  n )  e.  CC )
189 elmapi 7879 . . . . . . . . . . . 12  |-  ( ( F `  c )  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  ->  ( F `  c ) : ( 1 ... N ) --> ( 0 [,] 1 ) )
190189, 2eleq2s 2719 . . . . . . . . . . 11  |-  ( ( F `  c )  e.  I  ->  ( F `  c ) : ( 1 ... N ) --> ( 0 [,] 1 ) )
191171, 190syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  I )  ->  ( F `  c ) : ( 1 ... N ) --> ( 0 [,] 1 ) )
192191ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( F `  c
) `  n )  e.  ( 0 [,] 1
) )
193183, 192sseldi 3601 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( F `  c
) `  n )  e.  CC )
194188, 193subeq0ad 10402 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( c `  n )  -  (
( F `  c
) `  n )
)  =  0  <->  (
c `  n )  =  ( ( F `
 c ) `  n ) ) )
195182, 194bitrd 268 . . . . . 6  |-  ( ( ( ph  /\  c  e.  I )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( c  oF  -  ( F `
 c ) ) `
 n )  =  ( ( ( 1 ... N )  X. 
{ 0 } ) `
 n )  <->  ( c `  n )  =  ( ( F `  c
) `  n )
) )
196195ralbidva 2985 . . . . 5  |-  ( (
ph  /\  c  e.  I )  ->  ( A. n  e.  (
1 ... N ) ( ( c  oF  -  ( F `  c ) ) `  n )  =  ( ( ( 1 ... N )  X.  {
0 } ) `  n )  <->  A. n  e.  ( 1 ... N
) ( c `  n )  =  ( ( F `  c
) `  n )
) )
197170, 174, 175, 175, 27offn 6908 . . . . . 6  |-  ( (
ph  /\  c  e.  I )  ->  (
c  oF  -  ( F `  c ) )  Fn  ( 1 ... N ) )
198 fnconstg 6093 . . . . . . 7  |-  ( 0  e.  _V  ->  (
( 1 ... N
)  X.  { 0 } )  Fn  (
1 ... N ) )
199179, 198ax-mp 5 . . . . . 6  |-  ( ( 1 ... N )  X.  { 0 } )  Fn  ( 1 ... N )
200 eqfnfv 6311 . . . . . 6  |-  ( ( ( c  oF  -  ( F `  c ) )  Fn  ( 1 ... N
)  /\  ( (
1 ... N )  X. 
{ 0 } )  Fn  ( 1 ... N ) )  -> 
( ( c  oF  -  ( F `
 c ) )  =  ( ( 1 ... N )  X. 
{ 0 } )  <->  A. n  e.  (
1 ... N ) ( ( c  oF  -  ( F `  c ) ) `  n )  =  ( ( ( 1 ... N )  X.  {
0 } ) `  n ) ) )
201197, 199, 200sylancl 694 . . . . 5  |-  ( (
ph  /\  c  e.  I )  ->  (
( c  oF  -  ( F `  c ) )  =  ( ( 1 ... N )  X.  {
0 } )  <->  A. n  e.  ( 1 ... N
) ( ( c  oF  -  ( F `  c )
) `  n )  =  ( ( ( 1 ... N )  X.  { 0 } ) `  n ) ) )
202 eqfnfv 6311 . . . . . 6  |-  ( ( c  Fn  ( 1 ... N )  /\  ( F `  c )  Fn  ( 1 ... N ) )  -> 
( c  =  ( F `  c )  <->  A. n  e.  (
1 ... N ) ( c `  n )  =  ( ( F `
 c ) `  n ) ) )
203170, 174, 202syl2anc 693 . . . . 5  |-  ( (
ph  /\  c  e.  I )  ->  (
c  =  ( F `
 c )  <->  A. n  e.  ( 1 ... N
) ( c `  n )  =  ( ( F `  c
) `  n )
) )
204196, 201, 2033bitr4d 300 . . . 4  |-  ( (
ph  /\  c  e.  I )  ->  (
( c  oF  -  ( F `  c ) )  =  ( ( 1 ... N )  X.  {
0 } )  <->  c  =  ( F `  c ) ) )
205167, 204bitrd 268 . . 3  |-  ( (
ph  /\  c  e.  I )  ->  (
( ( x  e.  I  |->  ( x  oF  -  ( F `
 x ) ) ) `  c )  =  ( ( 1 ... N )  X. 
{ 0 } )  <-> 
c  =  ( F `
 c ) ) )
206205rexbidva 3049 . 2  |-  ( ph  ->  ( E. c  e.  I  ( ( x  e.  I  |->  ( x  oF  -  ( F `  x )
) ) `  c
)  =  ( ( 1 ... N )  X.  { 0 } )  <->  E. c  e.  I 
c  =  ( F `
 c ) ) )
207160, 206mpbid 222 1  |-  ( ph  ->  E. c  e.  I 
c  =  ( F `
 c ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   RR*cxr 10073    <_ cle 10075    - cmin 10266   -ucneg 10267   NNcn 11020   (,)cioo 12175   [,]cicc 12178   ...cfz 12326   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098   Xt_cpt 16099  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-lp 20940  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-hmph 21559  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator