Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierclimd Structured version   Visualization version   Unicode version

Theorem fourierclimd 40440
Description: Fourier series convergence, for piecewise smooth functions. See fourierd 40439 for the analogous  sum_ equation. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierclimd.f  |-  ( ph  ->  F : RR --> RR )
fourierclimd.t  |-  T  =  ( 2  x.  pi )
fourierclimd.per  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
fourierclimd.g  |-  G  =  ( ( RR  _D  F )  |`  ( -u pi (,) pi ) )
fourierclimd.dmdv  |-  ( ph  ->  ( ( -u pi (,) pi )  \  dom  G )  e.  Fin )
fourierclimd.dvcn  |-  ( ph  ->  G  e.  ( dom 
G -cn-> CC ) )
fourierclimd.rlim  |-  ( (
ph  /\  x  e.  ( ( -u pi [,) pi )  \  dom  G ) )  ->  (
( G  |`  (
x (,) +oo )
) lim CC  x )  =/=  (/) )
fourierclimd.llim  |-  ( (
ph  /\  x  e.  ( ( -u pi (,] pi )  \  dom  G ) )  ->  (
( G  |`  ( -oo (,) x ) ) lim
CC  x )  =/=  (/) )
fourierclimd.x  |-  ( ph  ->  X  e.  RR )
fourierclimd.l  |-  ( ph  ->  L  e.  ( ( F  |`  ( -oo (,) X ) ) lim CC  X ) )
fourierclimd.r  |-  ( ph  ->  R  e.  ( ( F  |`  ( X (,) +oo ) ) lim CC  X ) )
fourierclimd.a  |-  A  =  ( n  e.  NN0  |->  ( S. ( -u pi (,) pi ) ( ( F `  x )  x.  ( cos `  (
n  x.  x ) ) )  _d x  /  pi ) )
fourierclimd.b  |-  B  =  ( n  e.  NN  |->  ( S. ( -u pi (,) pi ) ( ( F `  x )  x.  ( sin `  (
n  x.  x ) ) )  _d x  /  pi ) )
fourierclimd.s  |-  S  =  ( n  e.  NN  |->  ( ( ( A `
 n )  x.  ( cos `  (
n  x.  X ) ) )  +  ( ( B `  n
)  x.  ( sin `  ( n  x.  X
) ) ) ) )
Assertion
Ref Expression
fourierclimd  |-  ( ph  ->  seq 1 (  +  ,  S )  ~~>  ( ( ( L  +  R
)  /  2 )  -  ( ( A `
 0 )  / 
2 ) ) )
Distinct variable groups:    n, F, x    x, G    x, T    n, X, x    ph, x
Allowed substitution hints:    ph( n)    A( x, n)    B( x, n)    R( x, n)    S( x, n)    T( n)    G( n)    L( x, n)

Proof of Theorem fourierclimd
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fourierclimd.f . . 3  |-  ( ph  ->  F : RR --> RR )
2 fourierclimd.t . . 3  |-  T  =  ( 2  x.  pi )
3 fourierclimd.per . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
4 fourierclimd.g . . 3  |-  G  =  ( ( RR  _D  F )  |`  ( -u pi (,) pi ) )
5 fourierclimd.dmdv . . 3  |-  ( ph  ->  ( ( -u pi (,) pi )  \  dom  G )  e.  Fin )
6 fourierclimd.dvcn . . 3  |-  ( ph  ->  G  e.  ( dom 
G -cn-> CC ) )
7 fourierclimd.rlim . . 3  |-  ( (
ph  /\  x  e.  ( ( -u pi [,) pi )  \  dom  G ) )  ->  (
( G  |`  (
x (,) +oo )
) lim CC  x )  =/=  (/) )
8 fourierclimd.llim . . 3  |-  ( (
ph  /\  x  e.  ( ( -u pi (,] pi )  \  dom  G ) )  ->  (
( G  |`  ( -oo (,) x ) ) lim
CC  x )  =/=  (/) )
9 fourierclimd.x . . 3  |-  ( ph  ->  X  e.  RR )
10 fourierclimd.l . . 3  |-  ( ph  ->  L  e.  ( ( F  |`  ( -oo (,) X ) ) lim CC  X ) )
11 fourierclimd.r . . 3  |-  ( ph  ->  R  e.  ( ( F  |`  ( X (,) +oo ) ) lim CC  X ) )
12 fourierclimd.a . . 3  |-  A  =  ( n  e.  NN0  |->  ( S. ( -u pi (,) pi ) ( ( F `  x )  x.  ( cos `  (
n  x.  x ) ) )  _d x  /  pi ) )
13 fourierclimd.b . . 3  |-  B  =  ( n  e.  NN  |->  ( S. ( -u pi (,) pi ) ( ( F `  x )  x.  ( sin `  (
n  x.  x ) ) )  _d x  /  pi ) )
14 fourierclimd.s . . . 4  |-  S  =  ( n  e.  NN  |->  ( ( ( A `
 n )  x.  ( cos `  (
n  x.  X ) ) )  +  ( ( B `  n
)  x.  ( sin `  ( n  x.  X
) ) ) ) )
15 nfcv 2764 . . . . 5  |-  F/_ k
( ( ( A `
 n )  x.  ( cos `  (
n  x.  X ) ) )  +  ( ( B `  n
)  x.  ( sin `  ( n  x.  X
) ) ) )
16 nfmpt1 4747 . . . . . . . . 9  |-  F/_ n
( n  e.  NN0  |->  ( S. ( -u pi (,) pi ) ( ( F `  x )  x.  ( cos `  (
n  x.  x ) ) )  _d x  /  pi ) )
1712, 16nfcxfr 2762 . . . . . . . 8  |-  F/_ n A
18 nfcv 2764 . . . . . . . 8  |-  F/_ n
k
1917, 18nffv 6198 . . . . . . 7  |-  F/_ n
( A `  k
)
20 nfcv 2764 . . . . . . 7  |-  F/_ n  x.
21 nfcv 2764 . . . . . . 7  |-  F/_ n
( cos `  (
k  x.  X ) )
2219, 20, 21nfov 6676 . . . . . 6  |-  F/_ n
( ( A `  k )  x.  ( cos `  ( k  x.  X ) ) )
23 nfcv 2764 . . . . . 6  |-  F/_ n  +
24 nfmpt1 4747 . . . . . . . . 9  |-  F/_ n
( n  e.  NN  |->  ( S. ( -u pi (,) pi ) ( ( F `  x )  x.  ( sin `  (
n  x.  x ) ) )  _d x  /  pi ) )
2513, 24nfcxfr 2762 . . . . . . . 8  |-  F/_ n B
2625, 18nffv 6198 . . . . . . 7  |-  F/_ n
( B `  k
)
27 nfcv 2764 . . . . . . 7  |-  F/_ n
( sin `  (
k  x.  X ) )
2826, 20, 27nfov 6676 . . . . . 6  |-  F/_ n
( ( B `  k )  x.  ( sin `  ( k  x.  X ) ) )
2922, 23, 28nfov 6676 . . . . 5  |-  F/_ n
( ( ( A `
 k )  x.  ( cos `  (
k  x.  X ) ) )  +  ( ( B `  k
)  x.  ( sin `  ( k  x.  X
) ) ) )
30 fveq2 6191 . . . . . . 7  |-  ( n  =  k  ->  ( A `  n )  =  ( A `  k ) )
31 oveq1 6657 . . . . . . . 8  |-  ( n  =  k  ->  (
n  x.  X )  =  ( k  x.  X ) )
3231fveq2d 6195 . . . . . . 7  |-  ( n  =  k  ->  ( cos `  ( n  x.  X ) )  =  ( cos `  (
k  x.  X ) ) )
3330, 32oveq12d 6668 . . . . . 6  |-  ( n  =  k  ->  (
( A `  n
)  x.  ( cos `  ( n  x.  X
) ) )  =  ( ( A `  k )  x.  ( cos `  ( k  x.  X ) ) ) )
34 fveq2 6191 . . . . . . 7  |-  ( n  =  k  ->  ( B `  n )  =  ( B `  k ) )
3531fveq2d 6195 . . . . . . 7  |-  ( n  =  k  ->  ( sin `  ( n  x.  X ) )  =  ( sin `  (
k  x.  X ) ) )
3634, 35oveq12d 6668 . . . . . 6  |-  ( n  =  k  ->  (
( B `  n
)  x.  ( sin `  ( n  x.  X
) ) )  =  ( ( B `  k )  x.  ( sin `  ( k  x.  X ) ) ) )
3733, 36oveq12d 6668 . . . . 5  |-  ( n  =  k  ->  (
( ( A `  n )  x.  ( cos `  ( n  x.  X ) ) )  +  ( ( B `
 n )  x.  ( sin `  (
n  x.  X ) ) ) )  =  ( ( ( A `
 k )  x.  ( cos `  (
k  x.  X ) ) )  +  ( ( B `  k
)  x.  ( sin `  ( k  x.  X
) ) ) ) )
3815, 29, 37cbvmpt 4749 . . . 4  |-  ( n  e.  NN  |->  ( ( ( A `  n
)  x.  ( cos `  ( n  x.  X
) ) )  +  ( ( B `  n )  x.  ( sin `  ( n  x.  X ) ) ) ) )  =  ( k  e.  NN  |->  ( ( ( A `  k )  x.  ( cos `  ( k  x.  X ) ) )  +  ( ( B `
 k )  x.  ( sin `  (
k  x.  X ) ) ) ) )
3914, 38eqtri 2644 . . 3  |-  S  =  ( k  e.  NN  |->  ( ( ( A `
 k )  x.  ( cos `  (
k  x.  X ) ) )  +  ( ( B `  k
)  x.  ( sin `  ( k  x.  X
) ) ) ) )
401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 39fourierdlem115 40438 . 2  |-  ( ph  ->  (  seq 1 (  +  ,  S )  ~~>  ( ( ( L  +  R )  / 
2 )  -  (
( A `  0
)  /  2 ) )  /\  ( ( ( A `  0
)  /  2 )  +  sum_ n  e.  NN  ( ( ( A `
 n )  x.  ( cos `  (
n  x.  X ) ) )  +  ( ( B `  n
)  x.  ( sin `  ( n  x.  X
) ) ) ) )  =  ( ( L  +  R )  /  2 ) ) )
4140simpld 475 1  |-  ( ph  ->  seq 1 (  +  ,  S )  ~~>  ( ( ( L  +  R
)  /  2 )  -  ( ( A `
 0 )  / 
2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   -oocmnf 10072    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   (,)cioo 12175   (,]cioc 12176   [,)cico 12177    seqcseq 12801    ~~> cli 14215   sum_csu 14416   sincsin 14794   cosccos 14795   picpi 14797   -cn->ccncf 22679   S.citg 23387   lim CC climc 23626    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierclim  40441
  Copyright terms: Public domain W3C validator