Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfplem1 Structured version   Visualization version   Unicode version

Theorem bfplem1 33621
Description: Lemma for bfp 33623. The sequence  G, which simply starts from any point in the space and iterates  F, satisfies the property that the distance from  G ( n ) to  G ( n  + 
1 ) decreases by at least  K after each step. Thus, the total distance from any  G ( i ) to  G ( j ) is bounded by a geometric series, and the sequence is Cauchy. Therefore, it converges to a point  ( ( ~~> t `  J
) `  G ) since the space is complete. (Contributed by Jeff Madsen, 17-Jun-2014.)
Hypotheses
Ref Expression
bfp.2  |-  ( ph  ->  D  e.  ( CMet `  X ) )
bfp.3  |-  ( ph  ->  X  =/=  (/) )
bfp.4  |-  ( ph  ->  K  e.  RR+ )
bfp.5  |-  ( ph  ->  K  <  1 )
bfp.6  |-  ( ph  ->  F : X --> X )
bfp.7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
bfp.8  |-  J  =  ( MetOpen `  D )
bfp.9  |-  ( ph  ->  A  e.  X )
bfp.10  |-  G  =  seq 1 ( ( F  o.  1st ) ,  ( NN  X.  { A } ) )
Assertion
Ref Expression
bfplem1  |-  ( ph  ->  G ( ~~> t `  J ) ( ( ~~> t `  J ) `
 G ) )
Distinct variable groups:    x, y, D    x, G, y    x, J, y    ph, x, y   
x, F, y    x, K, y    x, X, y
Allowed substitution hints:    A( x, y)

Proof of Theorem bfplem1
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bfp.2 . . 3  |-  ( ph  ->  D  e.  ( CMet `  X ) )
2 cmetmet 23084 . . . . 5  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
31, 2syl 17 . . . 4  |-  ( ph  ->  D  e.  ( Met `  X ) )
4 nnuz 11723 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
5 bfp.10 . . . . 5  |-  G  =  seq 1 ( ( F  o.  1st ) ,  ( NN  X.  { A } ) )
6 1zzd 11408 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
7 bfp.9 . . . . 5  |-  ( ph  ->  A  e.  X )
8 bfp.6 . . . . 5  |-  ( ph  ->  F : X --> X )
94, 5, 6, 7, 8algrf 15286 . . . 4  |-  ( ph  ->  G : NN --> X )
108, 7ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( F `  A
)  e.  X )
11 metcl 22137 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  ( F `  A )  e.  X )  ->  ( A D ( F `  A ) )  e.  RR )
123, 7, 10, 11syl3anc 1326 . . . . 5  |-  ( ph  ->  ( A D ( F `  A ) )  e.  RR )
13 bfp.4 . . . . 5  |-  ( ph  ->  K  e.  RR+ )
1412, 13rerpdivcld 11903 . . . 4  |-  ( ph  ->  ( ( A D ( F `  A
) )  /  K
)  e.  RR )
15 bfp.5 . . . 4  |-  ( ph  ->  K  <  1 )
16 fveq2 6191 . . . . . . . . 9  |-  ( j  =  1  ->  ( G `  j )  =  ( G ` 
1 ) )
17 oveq1 6657 . . . . . . . . . 10  |-  ( j  =  1  ->  (
j  +  1 )  =  ( 1  +  1 ) )
1817fveq2d 6195 . . . . . . . . 9  |-  ( j  =  1  ->  ( G `  ( j  +  1 ) )  =  ( G `  ( 1  +  1 ) ) )
1916, 18oveq12d 6668 . . . . . . . 8  |-  ( j  =  1  ->  (
( G `  j
) D ( G `
 ( j  +  1 ) ) )  =  ( ( G `
 1 ) D ( G `  (
1  +  1 ) ) ) )
20 oveq2 6658 . . . . . . . . 9  |-  ( j  =  1  ->  ( K ^ j )  =  ( K ^ 1 ) )
2120oveq2d 6666 . . . . . . . 8  |-  ( j  =  1  ->  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ j ) )  =  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ 1 ) ) )
2219, 21breq12d 4666 . . . . . . 7  |-  ( j  =  1  ->  (
( ( G `  j ) D ( G `  ( j  +  1 ) ) )  <_  ( (
( A D ( F `  A ) )  /  K )  x.  ( K ^
j ) )  <->  ( ( G `  1 ) D ( G `  ( 1  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ 1 ) ) ) )
2322imbi2d 330 . . . . . 6  |-  ( j  =  1  ->  (
( ph  ->  ( ( G `  j ) D ( G `  ( j  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ j ) ) )  <->  ( ph  ->  ( ( G `  1
) D ( G `
 ( 1  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ 1 ) ) ) ) )
24 fveq2 6191 . . . . . . . . 9  |-  ( j  =  k  ->  ( G `  j )  =  ( G `  k ) )
25 oveq1 6657 . . . . . . . . . 10  |-  ( j  =  k  ->  (
j  +  1 )  =  ( k  +  1 ) )
2625fveq2d 6195 . . . . . . . . 9  |-  ( j  =  k  ->  ( G `  ( j  +  1 ) )  =  ( G `  ( k  +  1 ) ) )
2724, 26oveq12d 6668 . . . . . . . 8  |-  ( j  =  k  ->  (
( G `  j
) D ( G `
 ( j  +  1 ) ) )  =  ( ( G `
 k ) D ( G `  (
k  +  1 ) ) ) )
28 oveq2 6658 . . . . . . . . 9  |-  ( j  =  k  ->  ( K ^ j )  =  ( K ^ k
) )
2928oveq2d 6666 . . . . . . . 8  |-  ( j  =  k  ->  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ j ) )  =  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ k
) ) )
3027, 29breq12d 4666 . . . . . . 7  |-  ( j  =  k  ->  (
( ( G `  j ) D ( G `  ( j  +  1 ) ) )  <_  ( (
( A D ( F `  A ) )  /  K )  x.  ( K ^
j ) )  <->  ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ k ) ) ) )
3130imbi2d 330 . . . . . 6  |-  ( j  =  k  ->  (
( ph  ->  ( ( G `  j ) D ( G `  ( j  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ j ) ) )  <->  ( ph  ->  ( ( G `  k
) D ( G `
 ( k  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ k
) ) ) ) )
32 fveq2 6191 . . . . . . . . 9  |-  ( j  =  ( k  +  1 )  ->  ( G `  j )  =  ( G `  ( k  +  1 ) ) )
33 oveq1 6657 . . . . . . . . . 10  |-  ( j  =  ( k  +  1 )  ->  (
j  +  1 )  =  ( ( k  +  1 )  +  1 ) )
3433fveq2d 6195 . . . . . . . . 9  |-  ( j  =  ( k  +  1 )  ->  ( G `  ( j  +  1 ) )  =  ( G `  ( ( k  +  1 )  +  1 ) ) )
3532, 34oveq12d 6668 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  (
( G `  j
) D ( G `
 ( j  +  1 ) ) )  =  ( ( G `
 ( k  +  1 ) ) D ( G `  (
( k  +  1 )  +  1 ) ) ) )
36 oveq2 6658 . . . . . . . . 9  |-  ( j  =  ( k  +  1 )  ->  ( K ^ j )  =  ( K ^ (
k  +  1 ) ) )
3736oveq2d 6666 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ j ) )  =  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) ) )
3835, 37breq12d 4666 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( ( G `  j ) D ( G `  ( j  +  1 ) ) )  <_  ( (
( A D ( F `  A ) )  /  K )  x.  ( K ^
j ) )  <->  ( ( G `  ( k  +  1 ) ) D ( G `  ( ( k  +  1 )  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ ( k  +  1 ) ) ) ) )
3938imbi2d 330 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( ph  ->  ( ( G `  j ) D ( G `  ( j  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ j ) ) )  <->  ( ph  ->  ( ( G `  (
k  +  1 ) ) D ( G `
 ( ( k  +  1 )  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) ) ) ) )
4012leidd 10594 . . . . . . 7  |-  ( ph  ->  ( A D ( F `  A ) )  <_  ( A D ( F `  A ) ) )
414, 5, 6, 7algr0 15285 . . . . . . . 8  |-  ( ph  ->  ( G `  1
)  =  A )
42 1nn 11031 . . . . . . . . . 10  |-  1  e.  NN
434, 5, 6, 7, 8algrp1 15287 . . . . . . . . . 10  |-  ( (
ph  /\  1  e.  NN )  ->  ( G `
 ( 1  +  1 ) )  =  ( F `  ( G `  1 )
) )
4442, 43mpan2 707 . . . . . . . . 9  |-  ( ph  ->  ( G `  (
1  +  1 ) )  =  ( F `
 ( G ` 
1 ) ) )
4541fveq2d 6195 . . . . . . . . 9  |-  ( ph  ->  ( F `  ( G `  1 )
)  =  ( F `
 A ) )
4644, 45eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( G `  (
1  +  1 ) )  =  ( F `
 A ) )
4741, 46oveq12d 6668 . . . . . . 7  |-  ( ph  ->  ( ( G ` 
1 ) D ( G `  ( 1  +  1 ) ) )  =  ( A D ( F `  A ) ) )
4813rpred 11872 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  RR )
4948recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  K  e.  CC )
5049exp1d 13003 . . . . . . . . 9  |-  ( ph  ->  ( K ^ 1 )  =  K )
5150oveq2d 6666 . . . . . . . 8  |-  ( ph  ->  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ 1 ) )  =  ( ( ( A D ( F `
 A ) )  /  K )  x.  K ) )
5212recnd 10068 . . . . . . . . 9  |-  ( ph  ->  ( A D ( F `  A ) )  e.  CC )
5313rpne0d 11877 . . . . . . . . 9  |-  ( ph  ->  K  =/=  0 )
5452, 49, 53divcan1d 10802 . . . . . . . 8  |-  ( ph  ->  ( ( ( A D ( F `  A ) )  /  K )  x.  K
)  =  ( A D ( F `  A ) ) )
5551, 54eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ 1 ) )  =  ( A D ( F `  A
) ) )
5640, 47, 553brtr4d 4685 . . . . . 6  |-  ( ph  ->  ( ( G ` 
1 ) D ( G `  ( 1  +  1 ) ) )  <_  ( (
( A D ( F `  A ) )  /  K )  x.  ( K ^
1 ) ) )
579ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  X )
58 peano2nn 11032 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
59 ffvelrn 6357 . . . . . . . . . . . . 13  |-  ( ( G : NN --> X  /\  ( k  +  1 )  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  X
)
609, 58, 59syl2an 494 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 ( k  +  1 ) )  e.  X )
6157, 60jca 554 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  k )  e.  X  /\  ( G `  ( k  +  1 ) )  e.  X ) )
62 bfp.7 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
6362ralrimivva 2971 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) ) )
6463adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  A. x  e.  X  A. y  e.  X  ( ( F `  x ) D ( F `  y ) )  <_ 
( K  x.  (
x D y ) ) )
65 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( x  =  ( G `  k )  ->  ( F `  x )  =  ( F `  ( G `  k ) ) )
6665oveq1d 6665 . . . . . . . . . . . . 13  |-  ( x  =  ( G `  k )  ->  (
( F `  x
) D ( F `
 y ) )  =  ( ( F `
 ( G `  k ) ) D ( F `  y
) ) )
67 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( x  =  ( G `  k )  ->  (
x D y )  =  ( ( G `
 k ) D y ) )
6867oveq2d 6666 . . . . . . . . . . . . 13  |-  ( x  =  ( G `  k )  ->  ( K  x.  ( x D y ) )  =  ( K  x.  ( ( G `  k ) D y ) ) )
6966, 68breq12d 4666 . . . . . . . . . . . 12  |-  ( x  =  ( G `  k )  ->  (
( ( F `  x ) D ( F `  y ) )  <_  ( K  x.  ( x D y ) )  <->  ( ( F `  ( G `  k ) ) D ( F `  y
) )  <_  ( K  x.  ( ( G `  k ) D y ) ) ) )
70 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( y  =  ( G `  ( k  +  1 ) )  ->  ( F `  y )  =  ( F `  ( G `  ( k  +  1 ) ) ) )
7170oveq2d 6666 . . . . . . . . . . . . 13  |-  ( y  =  ( G `  ( k  +  1 ) )  ->  (
( F `  ( G `  k )
) D ( F `
 y ) )  =  ( ( F `
 ( G `  k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) ) )
72 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( y  =  ( G `  ( k  +  1 ) )  ->  (
( G `  k
) D y )  =  ( ( G `
 k ) D ( G `  (
k  +  1 ) ) ) )
7372oveq2d 6666 . . . . . . . . . . . . 13  |-  ( y  =  ( G `  ( k  +  1 ) )  ->  ( K  x.  ( ( G `  k ) D y ) )  =  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) ) )
7471, 73breq12d 4666 . . . . . . . . . . . 12  |-  ( y  =  ( G `  ( k  +  1 ) )  ->  (
( ( F `  ( G `  k ) ) D ( F `
 y ) )  <_  ( K  x.  ( ( G `  k ) D y ) )  <->  ( ( F `  ( G `  k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  <_  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) ) ) )
7569, 74rspc2v 3322 . . . . . . . . . . 11  |-  ( ( ( G `  k
)  e.  X  /\  ( G `  ( k  +  1 ) )  e.  X )  -> 
( A. x  e.  X  A. y  e.  X  ( ( F `
 x ) D ( F `  y
) )  <_  ( K  x.  ( x D y ) )  ->  ( ( F `
 ( G `  k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  <_  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) ) ) )
7661, 64, 75sylc 65 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  ( G `
 k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  <_  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) ) )
773adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  D  e.  ( Met `  X
) )
788adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  F : X
--> X )
7978, 57ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( G `  k ) )  e.  X )
8078, 60ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( G `  ( k  +  1 ) ) )  e.  X )
81 metcl 22137 . . . . . . . . . . . 12  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( G `  k ) )  e.  X  /\  ( F `
 ( G `  ( k  +  1 ) ) )  e.  X )  ->  (
( F `  ( G `  k )
) D ( F `
 ( G `  ( k  +  1 ) ) ) )  e.  RR )
8277, 79, 80, 81syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  ( G `
 k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  e.  RR )
8348adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  K  e.  RR )
84 metcl 22137 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( Met `  X )  /\  ( G `  k )  e.  X  /\  ( G `  ( k  +  1 ) )  e.  X )  -> 
( ( G `  k ) D ( G `  ( k  +  1 ) ) )  e.  RR )
8577, 57, 60, 84syl3anc 1326 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  e.  RR )
8683, 85remulcld 10070 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( K  x.  ( ( G `
 k ) D ( G `  (
k  +  1 ) ) ) )  e.  RR )
8714adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( A D ( F `
 A ) )  /  K )  e.  RR )
8858adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  NN )
8988nnnn0d 11351 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e. 
NN0 )
9083, 89reexpcld 13025 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( K ^ ( k  +  1 ) )  e.  RR )
9187, 90remulcld 10070 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^
( k  +  1 ) ) )  e.  RR )
92 letr 10131 . . . . . . . . . . 11  |-  ( ( ( ( F `  ( G `  k ) ) D ( F `
 ( G `  ( k  +  1 ) ) ) )  e.  RR  /\  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  e.  RR  /\  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) )  e.  RR )  -> 
( ( ( ( F `  ( G `
 k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  <_  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  /\  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) ) )  ->  ( ( F `  ( G `  k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) ) ) )
9382, 86, 91, 92syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( F `  ( G `  k ) ) D ( F `
 ( G `  ( k  +  1 ) ) ) )  <_  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  /\  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) ) )  -> 
( ( F `  ( G `  k ) ) D ( F `
 ( G `  ( k  +  1 ) ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) ) ) )
9476, 93mpand 711 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) )  ->  (
( F `  ( G `  k )
) D ( F `
 ( G `  ( k  +  1 ) ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) ) ) )
95 nnnn0 11299 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  NN0 )
96 reexpcl 12877 . . . . . . . . . . . . 13  |-  ( ( K  e.  RR  /\  k  e.  NN0 )  -> 
( K ^ k
)  e.  RR )
9748, 95, 96syl2an 494 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( K ^ k )  e.  RR )
9887, 97remulcld 10070 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^
k ) )  e.  RR )
9913rpgt0d 11875 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  K )
10099adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  0  < 
K )
101 lemul1 10875 . . . . . . . . . . 11  |-  ( ( ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  e.  RR  /\  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ k ) )  e.  RR  /\  ( K  e.  RR  /\  0  <  K ) )  -> 
( ( ( G `
 k ) D ( G `  (
k  +  1 ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ k ) )  <-> 
( ( ( G `
 k ) D ( G `  (
k  +  1 ) ) )  x.  K
)  <_  ( (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ k ) )  x.  K ) ) )
10285, 98, 83, 100, 101syl112anc 1330 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( G `  k
) D ( G `
 ( k  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ k
) )  <->  ( (
( G `  k
) D ( G `
 ( k  +  1 ) ) )  x.  K )  <_ 
( ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ k
) )  x.  K
) ) )
10385recnd 10068 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  e.  CC )
10449adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  K  e.  CC )
105103, 104mulcomd 10061 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( G `  k
) D ( G `
 ( k  +  1 ) ) )  x.  K )  =  ( K  x.  (
( G `  k
) D ( G `
 ( k  +  1 ) ) ) ) )
10687recnd 10068 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( A D ( F `
 A ) )  /  K )  e.  CC )
10797recnd 10068 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( K ^ k )  e.  CC )
108106, 107, 104mulassd 10063 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ k ) )  x.  K )  =  ( ( ( A D ( F `  A ) )  /  K )  x.  (
( K ^ k
)  x.  K ) ) )
109 expp1 12867 . . . . . . . . . . . . . 14  |-  ( ( K  e.  CC  /\  k  e.  NN0 )  -> 
( K ^ (
k  +  1 ) )  =  ( ( K ^ k )  x.  K ) )
11049, 95, 109syl2an 494 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( K ^ ( k  +  1 ) )  =  ( ( K ^
k )  x.  K
) )
111110oveq2d 6666 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^
( k  +  1 ) ) )  =  ( ( ( A D ( F `  A ) )  /  K )  x.  (
( K ^ k
)  x.  K ) ) )
112108, 111eqtr4d 2659 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ k ) )  x.  K )  =  ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ ( k  +  1 ) ) ) )
113105, 112breq12d 4666 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  x.  K )  <_  ( ( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^
k ) )  x.  K )  <->  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) ) ) )
114102, 113bitrd 268 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( G `  k
) D ( G `
 ( k  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ k
) )  <->  ( K  x.  ( ( G `  k ) D ( G `  ( k  +  1 ) ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) ) ) )
1154, 5, 6, 7, 8algrp1 15287 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 ( k  +  1 ) )  =  ( F `  ( G `  k )
) )
1164, 5, 6, 7, 8algrp1 15287 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  +  1 )  e.  NN )  ->  ( G `  ( (
k  +  1 )  +  1 ) )  =  ( F `  ( G `  ( k  +  1 ) ) ) )
11758, 116sylan2 491 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 ( ( k  +  1 )  +  1 ) )  =  ( F `  ( G `  ( k  +  1 ) ) ) )
118115, 117oveq12d 6668 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  ( k  +  1 ) ) D ( G `  ( ( k  +  1 )  +  1 ) ) )  =  ( ( F `  ( G `  k ) ) D ( F `
 ( G `  ( k  +  1 ) ) ) ) )
119118breq1d 4663 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( G `  (
k  +  1 ) ) D ( G `
 ( ( k  +  1 )  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) )  <->  ( ( F `  ( G `  k ) ) D ( F `  ( G `  ( k  +  1 ) ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) ) ) )
12094, 114, 1193imtr4d 283 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( G `  k
) D ( G `
 ( k  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ k
) )  ->  (
( G `  (
k  +  1 ) ) D ( G `
 ( ( k  +  1 )  +  1 ) ) )  <_  ( ( ( A D ( F `
 A ) )  /  K )  x.  ( K ^ (
k  +  1 ) ) ) ) )
121120expcom 451 . . . . . . 7  |-  ( k  e.  NN  ->  ( ph  ->  ( ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ k ) )  ->  ( ( G `
 ( k  +  1 ) ) D ( G `  (
( k  +  1 )  +  1 ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ ( k  +  1 ) ) ) ) ) )
122121a2d 29 . . . . . 6  |-  ( k  e.  NN  ->  (
( ph  ->  ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ k ) ) )  ->  ( ph  ->  ( ( G `  ( k  +  1 ) ) D ( G `  ( ( k  +  1 )  +  1 ) ) )  <_  ( (
( A D ( F `  A ) )  /  K )  x.  ( K ^
( k  +  1 ) ) ) ) ) )
12323, 31, 39, 31, 56, 122nnind 11038 . . . . 5  |-  ( k  e.  NN  ->  ( ph  ->  ( ( G `
 k ) D ( G `  (
k  +  1 ) ) )  <_  (
( ( A D ( F `  A
) )  /  K
)  x.  ( K ^ k ) ) ) )
124123impcom 446 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  k ) D ( G `  ( k  +  1 ) ) )  <_ 
( ( ( A D ( F `  A ) )  /  K )  x.  ( K ^ k ) ) )
1253, 9, 14, 13, 15, 124geomcau 33555 . . 3  |-  ( ph  ->  G  e.  ( Cau `  D ) )
126 bfp.8 . . . 4  |-  J  =  ( MetOpen `  D )
127126cmetcau 23087 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  G  e.  ( Cau `  D
) )  ->  G  e.  dom  ( ~~> t `  J ) )
1281, 125, 127syl2anc 693 . 2  |-  ( ph  ->  G  e.  dom  ( ~~> t `  J )
)
129 metxmet 22139 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
130126methaus 22325 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Haus )
1313, 129, 1303syl 18 . . 3  |-  ( ph  ->  J  e.  Haus )
132 lmfun 21185 . . 3  |-  ( J  e.  Haus  ->  Fun  ( ~~> t `  J )
)
133 funfvbrb 6330 . . 3  |-  ( Fun  ( ~~> t `  J
)  ->  ( G  e.  dom  ( ~~> t `  J )  <->  G ( ~~> t `  J )
( ( ~~> t `  J ) `  G
) ) )
134131, 132, 1333syl 18 . 2  |-  ( ph  ->  ( G  e.  dom  (
~~> t `  J )  <-> 
G ( ~~> t `  J ) ( ( ~~> t `  J ) `
 G ) ) )
135128, 134mpbid 222 1  |-  ( ph  ->  G ( ~~> t `  J ) ( ( ~~> t `  J ) `
 G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   (/)c0 3915   {csn 4177   class class class wbr 4653    X. cxp 5112   dom cdm 5114    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   NN0cn0 11292   RR+crp 11832    seqcseq 12801   ^cexp 12860   *Metcxmt 19731   Metcme 19732   MetOpencmopn 19736   ~~> tclm 21030   Hauscha 21112   Caucca 23051   CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-ntr 20824  df-nei 20902  df-lm 21033  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-cfil 23053  df-cau 23054  df-cmet 23055
This theorem is referenced by:  bfplem2  33622
  Copyright terms: Public domain W3C validator