Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnmbllem0 Structured version   Visualization version   Unicode version

Theorem opnmbllem0 33445
Description: Lemma for ismblfin 33450; could also be used to shorten proof of opnmbllem 23369. (Contributed by Brendan Leahy, 13-Jul-2018.)
Assertion
Ref Expression
opnmbllem0  |-  ( A  e.  ( topGen `  ran  (,) )  ->  U. ( [,] " { z  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  |  ( [,] `  z )  C_  A } )  =  A )
Distinct variable group:    x, y, z, A

Proof of Theorem opnmbllem0
Dummy variables  n  r  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . . 8  |-  ( z  =  w  ->  ( [,] `  z )  =  ( [,] `  w
) )
21sseq1d 3632 . . . . . . 7  |-  ( z  =  w  ->  (
( [,] `  z
)  C_  A  <->  ( [,] `  w )  C_  A
) )
32elrab 3363 . . . . . 6  |-  ( w  e.  { z  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  |  ( [,] `  z )  C_  A }  <->  ( w  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  /\  ( [,] `  w )  C_  A ) )
4 simprr 796 . . . . . . 7  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  (
w  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  /\  ( [,] `  w
)  C_  A )
)  ->  ( [,] `  w )  C_  A
)
5 fvex 6201 . . . . . . . 8  |-  ( [,] `  w )  e.  _V
65elpw 4164 . . . . . . 7  |-  ( ( [,] `  w )  e.  ~P A  <->  ( [,] `  w )  C_  A
)
74, 6sylibr 224 . . . . . 6  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  (
w  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  /\  ( [,] `  w
)  C_  A )
)  ->  ( [,] `  w )  e.  ~P A )
83, 7sylan2b 492 . . . . 5  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A } )  ->  ( [,] `  w )  e. 
~P A )
98ralrimiva 2966 . . . 4  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A. w  e.  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A }  ( [,] `  w
)  e.  ~P A
)
10 iccf 12272 . . . . . 6  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
11 ffun 6048 . . . . . 6  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  Fun  [,] )
1210, 11ax-mp 5 . . . . 5  |-  Fun  [,]
13 ssrab2 3687 . . . . . . 7  |-  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }  C_ 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )
14 oveq1 6657 . . . . . . . . . . . 12  |-  ( x  =  r  ->  (
x  /  ( 2 ^ y ) )  =  ( r  / 
( 2 ^ y
) ) )
15 oveq1 6657 . . . . . . . . . . . . 13  |-  ( x  =  r  ->  (
x  +  1 )  =  ( r  +  1 ) )
1615oveq1d 6665 . . . . . . . . . . . 12  |-  ( x  =  r  ->  (
( x  +  1 )  /  ( 2 ^ y ) )  =  ( ( r  +  1 )  / 
( 2 ^ y
) ) )
1714, 16opeq12d 4410 . . . . . . . . . . 11  |-  ( x  =  r  ->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >.  =  <. ( r  /  ( 2 ^ y ) ) ,  ( ( r  +  1 )  / 
( 2 ^ y
) ) >. )
18 oveq2 6658 . . . . . . . . . . . . 13  |-  ( y  =  s  ->  (
2 ^ y )  =  ( 2 ^ s ) )
1918oveq2d 6666 . . . . . . . . . . . 12  |-  ( y  =  s  ->  (
r  /  ( 2 ^ y ) )  =  ( r  / 
( 2 ^ s
) ) )
2018oveq2d 6666 . . . . . . . . . . . 12  |-  ( y  =  s  ->  (
( r  +  1 )  /  ( 2 ^ y ) )  =  ( ( r  +  1 )  / 
( 2 ^ s
) ) )
2119, 20opeq12d 4410 . . . . . . . . . . 11  |-  ( y  =  s  ->  <. (
r  /  ( 2 ^ y ) ) ,  ( ( r  +  1 )  / 
( 2 ^ y
) ) >.  =  <. ( r  /  ( 2 ^ s ) ) ,  ( ( r  +  1 )  / 
( 2 ^ s
) ) >. )
2217, 21cbvmpt2v 6735 . . . . . . . . . 10  |-  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  =  ( r  e.  ZZ ,  s  e. 
NN0  |->  <. ( r  / 
( 2 ^ s
) ) ,  ( ( r  +  1 )  /  ( 2 ^ s ) )
>. )
2322dyadf 23359 . . . . . . . . 9  |-  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. ) : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )
24 frn 6053 . . . . . . . . 9  |-  ( ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. ) : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  C_  (  <_  i^i  ( RR  X.  RR ) ) )
2523, 24ax-mp 5 . . . . . . . 8  |-  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  C_  (  <_  i^i  ( RR  X.  RR ) )
26 inss2 3834 . . . . . . . . 9  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
27 rexpssxrxp 10084 . . . . . . . . 9  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
2826, 27sstri 3612 . . . . . . . 8  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
2925, 28sstri 3612 . . . . . . 7  |-  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  C_  ( RR*  X.  RR* )
3013, 29sstri 3612 . . . . . 6  |-  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }  C_  ( RR*  X.  RR* )
3110fdmi 6052 . . . . . 6  |-  dom  [,]  =  ( RR*  X.  RR* )
3230, 31sseqtr4i 3638 . . . . 5  |-  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }  C_ 
dom  [,]
33 funimass4 6247 . . . . 5  |-  ( ( Fun  [,]  /\  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }  C_ 
dom  [,] )  ->  (
( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
)  C_  ~P A  <->  A. w  e.  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A } 
( [,] `  w
)  e.  ~P A
) )
3412, 32, 33mp2an 708 . . . 4  |-  ( ( [,] " { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
)  C_  ~P A  <->  A. w  e.  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A } 
( [,] `  w
)  e.  ~P A
)
359, 34sylibr 224 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( [,] " { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A } )  C_  ~P A )
36 sspwuni 4611 . . 3  |-  ( ( [,] " { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
)  C_  ~P A  <->  U. ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
)  C_  A )
3735, 36sylib 208 . 2  |-  ( A  e.  ( topGen `  ran  (,) )  ->  U. ( [,] " { z  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  |  ( [,] `  z )  C_  A } )  C_  A
)
38 eqid 2622 . . . . . . 7  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
3938rexmet 22594 . . . . . 6  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
40 eqid 2622 . . . . . . . 8  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
4138, 40tgioo 22599 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
4241mopni2 22298 . . . . . 6  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  ->  E. r  e.  RR+  ( w (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A )
4339, 42mp3an1 1411 . . . . 5  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  A )  ->  E. r  e.  RR+  ( w (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A )
44 elssuni 4467 . . . . . . . . . . 11  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  U. ( topGen `
 ran  (,) )
)
45 uniretop 22566 . . . . . . . . . . 11  |-  RR  =  U. ( topGen `  ran  (,) )
4644, 45syl6sseqr 3652 . . . . . . . . . 10  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  RR )
4746sselda 3603 . . . . . . . . 9  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  A )  ->  w  e.  RR )
48 rpre 11839 . . . . . . . . 9  |-  ( r  e.  RR+  ->  r  e.  RR )
4938bl2ioo 22595 . . . . . . . . 9  |-  ( ( w  e.  RR  /\  r  e.  RR )  ->  ( w ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  =  ( ( w  -  r ) (,) (
w  +  r ) ) )
5047, 48, 49syl2an 494 . . . . . . . 8  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  r  e.  RR+ )  ->  ( w
( ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  =  ( ( w  -  r ) (,) ( w  +  r ) ) )
5150sseq1d 3632 . . . . . . 7  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  r  e.  RR+ )  ->  ( (
w ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A  <->  ( (
w  -  r ) (,) ( w  +  r ) )  C_  A ) )
52 2re 11090 . . . . . . . . . . 11  |-  2  e.  RR
53 1lt2 11194 . . . . . . . . . . 11  |-  1  <  2
54 expnlbnd 12994 . . . . . . . . . . 11  |-  ( ( r  e.  RR+  /\  2  e.  RR  /\  1  <  2 )  ->  E. n  e.  NN  ( 1  / 
( 2 ^ n
) )  <  r
)
5552, 53, 54mp3an23 1416 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  E. n  e.  NN  ( 1  / 
( 2 ^ n
) )  <  r
)
5655ad2antrl 764 . . . . . . . . 9  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  ->  E. n  e.  NN  ( 1  /  (
2 ^ n ) )  <  r )
5747ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  e.  RR )
58 2nn 11185 . . . . . . . . . . . . . . . . . 18  |-  2  e.  NN
59 nnnn0 11299 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  n  e.  NN0 )
6059ad2antrl 764 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  n  e.  NN0 )
61 nnexpcl 12873 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
6258, 60, 61sylancr 695 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 2 ^ n )  e.  NN )
6362nnred 11035 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 2 ^ n )  e.  RR )
6457, 63remulcld 10070 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  x.  ( 2 ^ n
) )  e.  RR )
65 fllelt 12598 . . . . . . . . . . . . . . 15  |-  ( ( w  x.  ( 2 ^ n ) )  e.  RR  ->  (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  <_  ( w  x.  ( 2 ^ n
) )  /\  (
w  x.  ( 2 ^ n ) )  <  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  +  1 ) ) )
6664, 65syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) )  <_ 
( w  x.  (
2 ^ n ) )  /\  ( w  x.  ( 2 ^ n ) )  < 
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 ) ) )
6766simpld 475 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  <_  (
w  x.  ( 2 ^ n ) ) )
68 reflcl 12597 . . . . . . . . . . . . . . 15  |-  ( ( w  x.  ( 2 ^ n ) )  e.  RR  ->  ( |_ `  ( w  x.  ( 2 ^ n
) ) )  e.  RR )
6964, 68syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  e.  RR )
7062nngt0d 11064 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  0  <  ( 2 ^ n ) )
71 ledivmul2 10902 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  e.  RR  /\  w  e.  RR  /\  (
( 2 ^ n
)  e.  RR  /\  0  <  ( 2 ^ n ) ) )  ->  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  <_  w 
<->  ( |_ `  (
w  x.  ( 2 ^ n ) ) )  <_  ( w  x.  ( 2 ^ n
) ) ) )
7269, 57, 63, 70, 71syl112anc 1330 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  <_  w  <->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  <_  (
w  x.  ( 2 ^ n ) ) ) )
7367, 72mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  <_  w
)
74 peano2re 10209 . . . . . . . . . . . . . . 15  |-  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  e.  RR  ->  (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  e.  RR )
7569, 74syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) )  +  1 )  e.  RR )
7675, 62nndivred 11069 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  e.  RR )
7766simprd 479 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  x.  ( 2 ^ n
) )  <  (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 ) )
78 ltmuldiv 10896 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  RR  /\  ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  e.  RR  /\  ( ( 2 ^ n )  e.  RR  /\  0  <  ( 2 ^ n ) ) )  ->  ( (
w  x.  ( 2 ^ n ) )  <  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  +  1 )  <->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) )
7957, 75, 63, 70, 78syl112anc 1330 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
w  x.  ( 2 ^ n ) )  <  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  +  1 )  <->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) )
8077, 79mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) )
8157, 76, 80ltled 10185 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  <_  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) )
8269, 62nndivred 11069 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  e.  RR )
83 elicc2 12238 . . . . . . . . . . . . 13  |-  ( ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) )  e.  RR  /\  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  +  1 )  /  (
2 ^ n ) )  e.  RR )  ->  ( w  e.  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) ) [,] (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) )  <->  ( w  e.  RR  /\  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  <_  w  /\  w  <_  (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) ) )
8482, 76, 83syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  e.  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) ) [,] (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) )  <->  ( w  e.  RR  /\  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  <_  w  /\  w  <_  (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) ) )
8557, 73, 81, 84mpbir3and 1245 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  e.  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) ) [,] (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) )
8664flcld 12599 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  e.  ZZ )
8722dyadval 23360 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  e.  ZZ  /\  n  e.  NN0 )  -> 
( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  =  <. ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) ,  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) >. )
8886, 60, 87syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) ) ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  =  <. ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) ,  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) >. )
8988fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  =  ( [,] `  <. ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) ,  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) >. )
)
90 df-ov 6653 . . . . . . . . . . . 12  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) [,] ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) )  =  ( [,] `  <. ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) ,  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) >. )
9189, 90syl6eqr 2674 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  =  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) ) [,] (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) )
9285, 91eleqtrrd 2704 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  e.  ( [,] `  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
) n ) ) )
93 ffn 6045 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. ) : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  Fn  ( ZZ  X.  NN0 ) )
9423, 93ax-mp 5 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  Fn  ( ZZ  X.  NN0 )
95 fnovrn 6809 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  Fn  ( ZZ 
X.  NN0 )  /\  ( |_ `  ( w  x.  ( 2 ^ n
) ) )  e.  ZZ  /\  n  e. 
NN0 )  ->  (
( |_ `  (
w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) n )  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) )
9694, 95mp3an1 1411 . . . . . . . . . . . . 13  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  e.  ZZ  /\  n  e.  NN0 )  -> 
( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
) )
9786, 60, 96syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) ) ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
) )
98 simplrl 800 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  r  e.  RR+ )
9998rpred 11872 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  r  e.  RR )
10057, 99resubcld 10458 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  -  r )  e.  RR )
101100rexrd 10089 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  -  r )  e. 
RR* )
10257, 99readdcld 10069 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  +  r )  e.  RR )
103102rexrd 10089 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  +  r )  e. 
RR* )
10482, 99readdcld 10069 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  +  r )  e.  RR )
10569recnd 10068 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  e.  CC )
106 1cnd 10056 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  1  e.  CC )
10763recnd 10068 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 2 ^ n )  e.  CC )
10862nnne0d 11065 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 2 ^ n )  =/=  0 )
109105, 106, 107, 108divdird 10839 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  =  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  +  ( 1  /  ( 2 ^ n ) ) ) )
11062nnrecred 11066 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 1  /  ( 2 ^ n ) )  e.  RR )
111 simprr 796 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 1  /  ( 2 ^ n ) )  < 
r )
112110, 99, 82, 111ltadd2dd 10196 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  +  ( 1  / 
( 2 ^ n
) ) )  < 
( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  +  r ) )
113109, 112eqbrtrd 4675 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  < 
( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  +  r ) )
11457, 76, 104, 80, 113lttrd 10198 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) )  +  r ) )
11557, 99, 82ltsubaddd 10623 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
w  -  r )  <  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  <->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) )  +  r ) ) )
116114, 115mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  -  r )  < 
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) ) )
11757, 110readdcld 10069 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  +  ( 1  / 
( 2 ^ n
) ) )  e.  RR )
11882, 57, 110, 73leadd1dd 10641 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  +  ( 1  / 
( 2 ^ n
) ) )  <_ 
( w  +  ( 1  /  ( 2 ^ n ) ) ) )
119109, 118eqbrtrd 4675 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  <_ 
( w  +  ( 1  /  ( 2 ^ n ) ) ) )
120110, 99, 57, 111ltadd2dd 10196 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  +  ( 1  / 
( 2 ^ n
) ) )  < 
( w  +  r ) )
12176, 117, 102, 119, 120lelttrd 10195 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  < 
( w  +  r ) )
122 iccssioo 12242 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  -  r )  e.  RR*  /\  ( w  +  r )  e.  RR* )  /\  ( ( w  -  r )  <  (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  /\  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) )  <  (
w  +  r ) ) )  ->  (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) ) [,] ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) 
C_  ( ( w  -  r ) (,) ( w  +  r ) ) )
123101, 103, 116, 121, 122syl22anc 1327 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) [,] ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) )  C_  ( ( w  -  r ) (,) (
w  +  r ) ) )
12491, 123eqsstrd 3639 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  C_  ( ( w  -  r ) (,) (
w  +  r ) ) )
125 simplrr 801 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
w  -  r ) (,) ( w  +  r ) )  C_  A )
126124, 125sstrd 3613 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  C_  A )
127 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) ) ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  ->  ( [,] `  z )  =  ( [,] `  (
( |_ `  (
w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) n ) ) )
128127sseq1d 3632 . . . . . . . . . . . . 13  |-  ( z  =  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) ) ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  ->  (
( [,] `  z
)  C_  A  <->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  C_  A ) )
129128elrab 3363 . . . . . . . . . . . 12  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) n )  e. 
{ z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A } 
<->  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) ) ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  /\  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  C_  A ) )
13097, 126, 129sylanbrc 698 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) ) ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  e.  {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
)
131 funfvima2 6493 . . . . . . . . . . . 12  |-  ( ( Fun  [,]  /\  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }  C_ 
dom  [,] )  ->  (
( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  e.  {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }  ->  ( [,] `  (
( |_ `  (
w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) n ) )  e.  ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) ) )
13212, 32, 131mp2an 708 . . . . . . . . . . 11  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) n )  e. 
{ z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A }  ->  ( [,] `  (
( |_ `  (
w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) n ) )  e.  ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) )
133130, 132syl 17 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  e.  ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) )
134 elunii 4441 . . . . . . . . . 10  |-  ( ( w  e.  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  /\  ( [,] `  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
) n ) )  e.  ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) )  ->  w  e.  U. ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) )
13592, 133, 134syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  e.  U. ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) )
13656, 135rexlimddv 3035 . . . . . . . 8  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  ->  w  e.  U. ( [,] " { z  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  |  ( [,] `  z )  C_  A } ) )
137136expr 643 . . . . . . 7  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  r  e.  RR+ )  ->  ( (
( w  -  r
) (,) ( w  +  r ) ) 
C_  A  ->  w  e.  U. ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) ) )
13851, 137sylbid 230 . . . . . 6  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  r  e.  RR+ )  ->  ( (
w ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A  ->  w  e.  U. ( [,] " { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A } ) ) )
139138rexlimdva 3031 . . . . 5  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  A )  ->  ( E. r  e.  RR+  (
w ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A  ->  w  e.  U. ( [,] " { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A } ) ) )
14043, 139mpd 15 . . . 4  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  A )  ->  w  e.  U. ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) )
141140ex 450 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( w  e.  A  ->  w  e. 
U. ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) ) )
142141ssrdv 3609 . 2  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  U. ( [,] " { z  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  |  ( [,] `  z )  C_  A } ) )
14337, 142eqssd 3620 1  |-  ( A  e.  ( topGen `  ran  (,) )  ->  U. ( [,] " { z  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  |  ( [,] `  z )  C_  A } )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   <.cop 4183   U.cuni 4436   class class class wbr 4653    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   |_cfl 12591   ^cexp 12860   abscabs 13974   topGenctg 16098   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750
This theorem is referenced by:  mblfinlem1  33446  mblfinlem2  33447
  Copyright terms: Public domain W3C validator