| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sincos6thpi | Structured version Visualization version Unicode version | ||
| Description: The sine and cosine of
|
| Ref | Expression |
|---|---|
| sincos6thpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 11091 |
. . 3
| |
| 2 | pire 24210 |
. . . . . 6
| |
| 3 | 6re 11101 |
. . . . . 6
| |
| 4 | 6pos 11119 |
. . . . . . 7
| |
| 5 | 3, 4 | gt0ne0ii 10564 |
. . . . . 6
|
| 6 | 2, 3, 5 | redivcli 10792 |
. . . . 5
|
| 7 | 6 | recni 10052 |
. . . 4
|
| 8 | sincl 14856 |
. . . 4
| |
| 9 | 7, 8 | ax-mp 5 |
. . 3
|
| 10 | 2ne0 11113 |
. . 3
| |
| 11 | recoscl 14871 |
. . . . . . . . . 10
| |
| 12 | 6, 11 | ax-mp 5 |
. . . . . . . . 9
|
| 13 | 12 | recni 10052 |
. . . . . . . 8
|
| 14 | 1, 9, 13 | mulassi 10049 |
. . . . . . 7
|
| 15 | sin2t 14907 |
. . . . . . . 8
| |
| 16 | 7, 15 | ax-mp 5 |
. . . . . . 7
|
| 17 | 14, 16 | eqtr4i 2647 |
. . . . . 6
|
| 18 | 3cn 11095 |
. . . . . . . . . 10
| |
| 19 | 3ne0 11115 |
. . . . . . . . . 10
| |
| 20 | 1, 18, 19 | divcli 10767 |
. . . . . . . . 9
|
| 21 | 18, 19 | reccli 10755 |
. . . . . . . . 9
|
| 22 | df-3 11080 |
. . . . . . . . . . 11
| |
| 23 | 22 | oveq1i 6660 |
. . . . . . . . . 10
|
| 24 | 18, 19 | dividi 10758 |
. . . . . . . . . 10
|
| 25 | ax-1cn 9994 |
. . . . . . . . . . 11
| |
| 26 | 1, 25, 18, 19 | divdiri 10782 |
. . . . . . . . . 10
|
| 27 | 23, 24, 26 | 3eqtr3ri 2653 |
. . . . . . . . 9
|
| 28 | sincosq1eq 24264 |
. . . . . . . . 9
| |
| 29 | 20, 21, 27, 28 | mp3an 1424 |
. . . . . . . 8
|
| 30 | picn 24211 |
. . . . . . . . . . 11
| |
| 31 | 1, 18, 30, 1, 19, 10 | divmuldivi 10785 |
. . . . . . . . . 10
|
| 32 | 3t2e6 11179 |
. . . . . . . . . . 11
| |
| 33 | 32 | oveq2i 6661 |
. . . . . . . . . 10
|
| 34 | 6cn 11102 |
. . . . . . . . . . 11
| |
| 35 | 1, 30, 34, 5 | divassi 10781 |
. . . . . . . . . 10
|
| 36 | 31, 33, 35 | 3eqtri 2648 |
. . . . . . . . 9
|
| 37 | 36 | fveq2i 6194 |
. . . . . . . 8
|
| 38 | 29, 37 | eqtr3i 2646 |
. . . . . . 7
|
| 39 | 25, 18, 30, 1, 19, 10 | divmuldivi 10785 |
. . . . . . . . 9
|
| 40 | 30 | mulid2i 10043 |
. . . . . . . . . 10
|
| 41 | 40, 32 | oveq12i 6662 |
. . . . . . . . 9
|
| 42 | 39, 41 | eqtri 2644 |
. . . . . . . 8
|
| 43 | 42 | fveq2i 6194 |
. . . . . . 7
|
| 44 | 38, 43 | eqtr3i 2646 |
. . . . . 6
|
| 45 | 17, 44 | eqtri 2644 |
. . . . 5
|
| 46 | 13 | mulid2i 10043 |
. . . . 5
|
| 47 | 45, 46 | eqtr4i 2647 |
. . . 4
|
| 48 | 1, 9 | mulcli 10045 |
. . . . 5
|
| 49 | pipos 24212 |
. . . . . . . . . . 11
| |
| 50 | 2, 3, 49, 4 | divgt0ii 10941 |
. . . . . . . . . 10
|
| 51 | 2lt6 11207 |
. . . . . . . . . . 11
| |
| 52 | 2re 11090 |
. . . . . . . . . . . . 13
| |
| 53 | 2pos 11112 |
. . . . . . . . . . . . 13
| |
| 54 | 52, 53 | pm3.2i 471 |
. . . . . . . . . . . 12
|
| 55 | 3, 4 | pm3.2i 471 |
. . . . . . . . . . . 12
|
| 56 | 2, 49 | pm3.2i 471 |
. . . . . . . . . . . 12
|
| 57 | ltdiv2 10909 |
. . . . . . . . . . . 12
| |
| 58 | 54, 55, 56, 57 | mp3an 1424 |
. . . . . . . . . . 11
|
| 59 | 51, 58 | mpbi 220 |
. . . . . . . . . 10
|
| 60 | 0re 10040 |
. . . . . . . . . . 11
| |
| 61 | halfpire 24216 |
. . . . . . . . . . 11
| |
| 62 | rexr 10085 |
. . . . . . . . . . . 12
| |
| 63 | rexr 10085 |
. . . . . . . . . . . 12
| |
| 64 | elioo2 12216 |
. . . . . . . . . . . 12
| |
| 65 | 62, 63, 64 | syl2an 494 |
. . . . . . . . . . 11
|
| 66 | 60, 61, 65 | mp2an 708 |
. . . . . . . . . 10
|
| 67 | 6, 50, 59, 66 | mpbir3an 1244 |
. . . . . . . . 9
|
| 68 | sincosq1sgn 24250 |
. . . . . . . . 9
| |
| 69 | 67, 68 | ax-mp 5 |
. . . . . . . 8
|
| 70 | 69 | simpri 478 |
. . . . . . 7
|
| 71 | 12, 70 | gt0ne0ii 10564 |
. . . . . 6
|
| 72 | 13, 71 | pm3.2i 471 |
. . . . 5
|
| 73 | mulcan2 10665 |
. . . . 5
| |
| 74 | 48, 25, 72, 73 | mp3an 1424 |
. . . 4
|
| 75 | 47, 74 | mpbi 220 |
. . 3
|
| 76 | 1, 9, 10, 75 | mvllmuli 10858 |
. 2
|
| 77 | 3re 11094 |
. . . . . . . 8
| |
| 78 | 3pos 11114 |
. . . . . . . 8
| |
| 79 | 77, 78 | sqrtpclii 14122 |
. . . . . . 7
|
| 80 | 79 | recni 10052 |
. . . . . 6
|
| 81 | 80, 1, 10 | sqdivi 12948 |
. . . . 5
|
| 82 | 60, 77, 78 | ltleii 10160 |
. . . . . . 7
|
| 83 | 77 | sqsqrti 14115 |
. . . . . . 7
|
| 84 | 82, 83 | ax-mp 5 |
. . . . . 6
|
| 85 | sq2 12960 |
. . . . . 6
| |
| 86 | 84, 85 | oveq12i 6662 |
. . . . 5
|
| 87 | 81, 86 | eqtri 2644 |
. . . 4
|
| 88 | 87 | fveq2i 6194 |
. . 3
|
| 89 | 77 | sqrtge0i 14116 |
. . . . . 6
|
| 90 | 82, 89 | ax-mp 5 |
. . . . 5
|
| 91 | 79, 52 | divge0i 10933 |
. . . . 5
|
| 92 | 90, 53, 91 | mp2an 708 |
. . . 4
|
| 93 | 79, 52, 10 | redivcli 10792 |
. . . . 5
|
| 94 | 93 | sqrtsqi 14114 |
. . . 4
|
| 95 | 92, 94 | ax-mp 5 |
. . 3
|
| 96 | 4cn 11098 |
. . . . . . . 8
| |
| 97 | 4ne0 11117 |
. . . . . . . 8
| |
| 98 | 96, 97 | dividi 10758 |
. . . . . . 7
|
| 99 | 98 | oveq1i 6660 |
. . . . . 6
|
| 100 | 96, 97 | pm3.2i 471 |
. . . . . . . 8
|
| 101 | divsubdir 10721 |
. . . . . . . 8
| |
| 102 | 96, 25, 100, 101 | mp3an 1424 |
. . . . . . 7
|
| 103 | 3p1e4 11153 |
. . . . . . . . 9
| |
| 104 | 96, 25, 18 | subadd2i 10369 |
. . . . . . . . 9
|
| 105 | 103, 104 | mpbir 221 |
. . . . . . . 8
|
| 106 | 105 | oveq1i 6660 |
. . . . . . 7
|
| 107 | 102, 106 | eqtr3i 2646 |
. . . . . 6
|
| 108 | 96, 97 | reccli 10755 |
. . . . . . 7
|
| 109 | 13 | sqcli 12944 |
. . . . . . 7
|
| 110 | 76 | oveq1i 6660 |
. . . . . . . . . 10
|
| 111 | 1, 10 | sqrecii 12946 |
. . . . . . . . . 10
|
| 112 | 85 | oveq2i 6661 |
. . . . . . . . . 10
|
| 113 | 110, 111, 112 | 3eqtri 2648 |
. . . . . . . . 9
|
| 114 | 113 | oveq1i 6660 |
. . . . . . . 8
|
| 115 | sincossq 14906 |
. . . . . . . . 9
| |
| 116 | 7, 115 | ax-mp 5 |
. . . . . . . 8
|
| 117 | 114, 116 | eqtr3i 2646 |
. . . . . . 7
|
| 118 | 25, 108, 109, 117 | subaddrii 10370 |
. . . . . 6
|
| 119 | 99, 107, 118 | 3eqtr3ri 2653 |
. . . . 5
|
| 120 | 119 | fveq2i 6194 |
. . . 4
|
| 121 | 60, 12, 70 | ltleii 10160 |
. . . . 5
|
| 122 | 12 | sqrtsqi 14114 |
. . . . 5
|
| 123 | 121, 122 | ax-mp 5 |
. . . 4
|
| 124 | 120, 123 | eqtr3i 2646 |
. . 3
|
| 125 | 88, 95, 124 | 3eqtr3ri 2653 |
. 2
|
| 126 | 76, 125 | pm3.2i 471 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ioc 12180 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-fac 13061 df-bc 13090 df-hash 13118 df-shft 13807 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-ef 14798 df-sin 14800 df-cos 14801 df-pi 14803 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-mulg 17541 df-cntz 17750 df-cmn 18195 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-lp 20940 df-perf 20941 df-cn 21031 df-cnp 21032 df-haus 21119 df-tx 21365 df-hmeo 21558 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-xms 22125 df-ms 22126 df-tms 22127 df-cncf 22681 df-limc 23630 df-dv 23631 |
| This theorem is referenced by: sincos3rdpi 24268 1cubrlem 24568 pigt3 33402 |
| Copyright terms: Public domain | W3C validator |