MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem5 Structured version   Visualization version   GIF version

Theorem bposlem5 25013
Description: Lemma for bpos 25018. Bound the product of all small primes in the binomial coefficient. (Contributed by Mario Carneiro, 15-Mar-2014.) (Proof shortened by AV, 15-Sep-2021.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem5
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bpos.3 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
2 id 22 . . . . . . . 8 (𝑛 ∈ ℙ → 𝑛 ∈ ℙ)
3 5nn 11188 . . . . . . . . . . 11 5 ∈ ℕ
4 bpos.1 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘5))
5 eluznn 11758 . . . . . . . . . . 11 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
63, 4, 5sylancr 695 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
76nnnn0d 11351 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
8 fzctr 12451 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
9 bccl2 13110 . . . . . . . . 9 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
107, 8, 93syl 18 . . . . . . . 8 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
11 pccl 15554 . . . . . . . 8 ((𝑛 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
122, 10, 11syl2anr 495 . . . . . . 7 ((𝜑𝑛 ∈ ℙ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
1312ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
141, 13pcmptcl 15595 . . . . 5 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
1514simprd 479 . . . 4 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
16 3nn 11186 . . . . 5 3 ∈ ℕ
17 bpos.5 . . . . . 6 𝑀 = (⌊‘(√‘(2 · 𝑁)))
18 2z 11409 . . . . . . . . . . 11 2 ∈ ℤ
196nnzd 11481 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
20 zmulcl 11426 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
2118, 19, 20sylancr 695 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℤ)
2221zred 11482 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ)
23 2nn 11185 . . . . . . . . . . . 12 2 ∈ ℕ
24 nnmulcl 11043 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
2523, 6, 24sylancr 695 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℕ)
2625nnrpd 11870 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2726rpge0d 11876 . . . . . . . . 9 (𝜑 → 0 ≤ (2 · 𝑁))
2822, 27resqrtcld 14156 . . . . . . . 8 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
2928flcld 12599 . . . . . . 7 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ ℤ)
30 sqrt9 14014 . . . . . . . . 9 (√‘9) = 3
31 9re 11107 . . . . . . . . . . . 12 9 ∈ ℝ
3231a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ∈ ℝ)
33 10re 11517 . . . . . . . . . . . 12 10 ∈ ℝ
3433a1i 11 . . . . . . . . . . 11 (𝜑10 ∈ ℝ)
35 lep1 10862 . . . . . . . . . . . . . 14 (9 ∈ ℝ → 9 ≤ (9 + 1))
3631, 35ax-mp 5 . . . . . . . . . . . . 13 9 ≤ (9 + 1)
37 9p1e10 11496 . . . . . . . . . . . . 13 (9 + 1) = 10
3836, 37breqtri 4678 . . . . . . . . . . . 12 9 ≤ 10
3938a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ≤ 10)
40 5cn 11100 . . . . . . . . . . . . 13 5 ∈ ℂ
41 2cn 11091 . . . . . . . . . . . . 13 2 ∈ ℂ
42 5t2e10 11634 . . . . . . . . . . . . 13 (5 · 2) = 10
4340, 41, 42mulcomli 10047 . . . . . . . . . . . 12 (2 · 5) = 10
44 eluzle 11700 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
454, 44syl 17 . . . . . . . . . . . . 13 (𝜑 → 5 ≤ 𝑁)
466nnred 11035 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
47 5re 11099 . . . . . . . . . . . . . . 15 5 ∈ ℝ
48 2re 11090 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
49 2pos 11112 . . . . . . . . . . . . . . . 16 0 < 2
5048, 49pm3.2i 471 . . . . . . . . . . . . . . 15 (2 ∈ ℝ ∧ 0 < 2)
51 lemul2 10876 . . . . . . . . . . . . . . 15 ((5 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5247, 50, 51mp3an13 1415 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5346, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
5445, 53mpbid 222 . . . . . . . . . . . 12 (𝜑 → (2 · 5) ≤ (2 · 𝑁))
5543, 54syl5eqbrr 4689 . . . . . . . . . . 11 (𝜑10 ≤ (2 · 𝑁))
5632, 34, 22, 39, 55letrd 10194 . . . . . . . . . 10 (𝜑 → 9 ≤ (2 · 𝑁))
57 0re 10040 . . . . . . . . . . . . 13 0 ∈ ℝ
58 9pos 11122 . . . . . . . . . . . . 13 0 < 9
5957, 31, 58ltleii 10160 . . . . . . . . . . . 12 0 ≤ 9
6031, 59pm3.2i 471 . . . . . . . . . . 11 (9 ∈ ℝ ∧ 0 ≤ 9)
6122, 27jca 554 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)))
62 sqrtle 14001 . . . . . . . . . . 11 (((9 ∈ ℝ ∧ 0 ≤ 9) ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁))) → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
6360, 61, 62sylancr 695 . . . . . . . . . 10 (𝜑 → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
6456, 63mpbid 222 . . . . . . . . 9 (𝜑 → (√‘9) ≤ (√‘(2 · 𝑁)))
6530, 64syl5eqbrr 4689 . . . . . . . 8 (𝜑 → 3 ≤ (√‘(2 · 𝑁)))
66 3z 11410 . . . . . . . . 9 3 ∈ ℤ
67 flge 12606 . . . . . . . . 9 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℤ) → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
6828, 66, 67sylancl 694 . . . . . . . 8 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
6965, 68mpbid 222 . . . . . . 7 (𝜑 → 3 ≤ (⌊‘(√‘(2 · 𝑁))))
7066eluz1i 11695 . . . . . . 7 ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ ℤ ∧ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
7129, 69, 70sylanbrc 698 . . . . . 6 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3))
7217, 71syl5eqel 2705 . . . . 5 (𝜑𝑀 ∈ (ℤ‘3))
73 eluznn 11758 . . . . 5 ((3 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ)
7416, 72, 73sylancr 695 . . . 4 (𝜑𝑀 ∈ ℕ)
7515, 74ffvelrnd 6360 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
7675nnred 11035 . 2 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℝ)
7774nnred 11035 . . . . 5 (𝜑𝑀 ∈ ℝ)
78 ppicl 24857 . . . . 5 (𝑀 ∈ ℝ → (π𝑀) ∈ ℕ0)
7977, 78syl 17 . . . 4 (𝜑 → (π𝑀) ∈ ℕ0)
8025, 79nnexpcld 13030 . . 3 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ∈ ℕ)
8180nnred 11035 . 2 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ∈ ℝ)
82 nndivre 11056 . . . . 5 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
8328, 16, 82sylancl 694 . . . 4 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
84 readdcl 10019 . . . 4 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
8583, 48, 84sylancl 694 . . 3 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
8622, 27, 85recxpcld 24469 . 2 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ∈ ℝ)
87 fveq2 6191 . . . . . 6 (𝑥 = 1 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘1))
88 fveq2 6191 . . . . . . . 8 (𝑥 = 1 → (π𝑥) = (π‘1))
89 ppi1 24890 . . . . . . . 8 (π‘1) = 0
9088, 89syl6eq 2672 . . . . . . 7 (𝑥 = 1 → (π𝑥) = 0)
9190oveq2d 6666 . . . . . 6 (𝑥 = 1 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑0))
9287, 91breq12d 4666 . . . . 5 (𝑥 = 1 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0)))
9392imbi2d 330 . . . 4 (𝑥 = 1 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0))))
94 fveq2 6191 . . . . . 6 (𝑥 = 𝑘 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑘))
95 fveq2 6191 . . . . . . 7 (𝑥 = 𝑘 → (π𝑥) = (π𝑘))
9695oveq2d 6666 . . . . . 6 (𝑥 = 𝑘 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π𝑘)))
9794, 96breq12d 4666 . . . . 5 (𝑥 = 𝑘 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))))
9897imbi2d 330 . . . 4 (𝑥 = 𝑘 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)))))
99 fveq2 6191 . . . . . 6 (𝑥 = (𝑘 + 1) → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘(𝑘 + 1)))
100 fveq2 6191 . . . . . . 7 (𝑥 = (𝑘 + 1) → (π𝑥) = (π‘(𝑘 + 1)))
101100oveq2d 6666 . . . . . 6 (𝑥 = (𝑘 + 1) → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π‘(𝑘 + 1))))
10299, 101breq12d 4666 . . . . 5 (𝑥 = (𝑘 + 1) → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
103102imbi2d 330 . . . 4 (𝑥 = (𝑘 + 1) → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
104 fveq2 6191 . . . . . 6 (𝑥 = 𝑀 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑀))
105 fveq2 6191 . . . . . . 7 (𝑥 = 𝑀 → (π𝑥) = (π𝑀))
106105oveq2d 6666 . . . . . 6 (𝑥 = 𝑀 → ((2 · 𝑁)↑(π𝑥)) = ((2 · 𝑁)↑(π𝑀)))
107104, 106breq12d 4666 . . . . 5 (𝑥 = 𝑀 → ((seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥)) ↔ (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀))))
108107imbi2d 330 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (seq1( · , 𝐹)‘𝑥) ≤ ((2 · 𝑁)↑(π𝑥))) ↔ (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀)))))
109 1z 11407 . . . . . . . 8 1 ∈ ℤ
110 seq1 12814 . . . . . . . 8 (1 ∈ ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1))
111109, 110ax-mp 5 . . . . . . 7 (seq1( · , 𝐹)‘1) = (𝐹‘1)
112 1nn 11031 . . . . . . . 8 1 ∈ ℕ
113 1nprm 15392 . . . . . . . . . . 11 ¬ 1 ∈ ℙ
114 eleq1 2689 . . . . . . . . . . 11 (𝑛 = 1 → (𝑛 ∈ ℙ ↔ 1 ∈ ℙ))
115113, 114mtbiri 317 . . . . . . . . . 10 (𝑛 = 1 → ¬ 𝑛 ∈ ℙ)
116115iffalsed 4097 . . . . . . . . 9 (𝑛 = 1 → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1) = 1)
117 1ex 10035 . . . . . . . . 9 1 ∈ V
118116, 1, 117fvmpt 6282 . . . . . . . 8 (1 ∈ ℕ → (𝐹‘1) = 1)
119112, 118ax-mp 5 . . . . . . 7 (𝐹‘1) = 1
120111, 119eqtri 2644 . . . . . 6 (seq1( · , 𝐹)‘1) = 1
121 1le1 10655 . . . . . 6 1 ≤ 1
122120, 121eqbrtri 4674 . . . . 5 (seq1( · , 𝐹)‘1) ≤ 1
12321zcnd 11483 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
124123exp0d 13002 . . . . 5 (𝜑 → ((2 · 𝑁)↑0) = 1)
125122, 124syl5breqr 4691 . . . 4 (𝜑 → (seq1( · , 𝐹)‘1) ≤ ((2 · 𝑁)↑0))
12615ffvelrnda 6359 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
127126nnred 11035 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
128127adantr 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
12925ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
130 nnre 11027 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
131130ad2antlr 763 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → 𝑘 ∈ ℝ)
132 ppicl 24857 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → (π𝑘) ∈ ℕ0)
133131, 132syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (π𝑘) ∈ ℕ0)
134129, 133nnexpcld 13030 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π𝑘)) ∈ ℕ)
135134nnred 11035 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π𝑘)) ∈ ℝ)
136 nnre 11027 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ → (2 · 𝑁) ∈ ℝ)
137 nngt0 11049 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℕ → 0 < (2 · 𝑁))
138136, 137jca 554 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℕ → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
13925, 138syl 17 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
140139ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁)))
141 lemul1 10875 . . . . . . . . . 10 (((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ ((2 · 𝑁)↑(π𝑘)) ∈ ℝ ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 < (2 · 𝑁))) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
142128, 135, 140, 141syl3anc 1326 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
143 nnz 11399 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
144143adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
145 ppiprm 24877 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = ((π𝑘) + 1))
146144, 145sylan 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = ((π𝑘) + 1))
147146oveq2d 6666 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = ((2 · 𝑁)↑((π𝑘) + 1)))
148123ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℂ)
149148, 133expp1d 13009 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑((π𝑘) + 1)) = (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁)))
150147, 149eqtrd 2656 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁)))
151150breq2d 4665 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ (((2 · 𝑁)↑(π𝑘)) · (2 · 𝑁))))
152142, 151bitr4d 271 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) ↔ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
153 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
154 nnuz 11723 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
155153, 154syl6eleq 2711 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
156 seqp1 12816 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘1) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
157155, 156syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
158157adantr 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
159 peano2nn 11032 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
160159adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
161 eleq1 2689 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝑛 ∈ ℙ ↔ (𝑘 + 1) ∈ ℙ))
162 id 22 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
163 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) = ((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁)))
164162, 163oveq12d 6668 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
165161, 164ifbieq1d 4109 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
166 ovex 6678 . . . . . . . . . . . . . . . 16 ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ∈ V
167166, 117ifex 4156 . . . . . . . . . . . . . . 15 if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) ∈ V
168165, 1, 167fvmpt 6282 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
169160, 168syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1))
170 iftrue 4092 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
171169, 170sylan9eq 2676 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))))
1726adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑁 ∈ ℕ)
173 bposlem1 25009 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑘 + 1) ∈ ℙ) → ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
174172, 173sylan 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
175171, 174eqbrtrd 4675 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁))
17614simpld 475 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶ℕ)
177 ffvelrn 6357 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
178176, 159, 177syl2an 494 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
179178nnred 11035 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
180179adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
18122ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
182 nnre 11027 . . . . . . . . . . . . . . 15 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → (seq1( · , 𝐹)‘𝑘) ∈ ℝ)
183 nngt0 11049 . . . . . . . . . . . . . . 15 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → 0 < (seq1( · , 𝐹)‘𝑘))
184182, 183jca 554 . . . . . . . . . . . . . 14 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
185126, 184syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
186185adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘)))
187 lemul2 10876 . . . . . . . . . . . 12 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑘) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑘))) → ((𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁) ↔ ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁))))
188180, 181, 186, 187syl3anc 1326 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((𝐹‘(𝑘 + 1)) ≤ (2 · 𝑁) ↔ ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁))))
189175, 188mpbid 222 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)))
190158, 189eqbrtrd 4675 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)))
191 ffvelrn 6357 . . . . . . . . . . . . 13 ((seq1( · , 𝐹):ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℕ)
19215, 159, 191syl2an 494 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℕ)
193192nnred 11035 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℝ)
19425adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
195126, 194nnmulcld 11068 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℕ)
196195nnred 11035 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℝ)
197160nnred 11035 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
198 ppicl 24857 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℝ → (π‘(𝑘 + 1)) ∈ ℕ0)
199197, 198syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (π‘(𝑘 + 1)) ∈ ℕ0)
200194, 199nnexpcld 13030 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℕ)
201200nnred 11035 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℝ)
202 letr 10131 . . . . . . . . . . 11 (((seq1( · , 𝐹)‘(𝑘 + 1)) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ∈ ℝ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
203193, 196, 201, 202syl3anc 1326 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
204203adantr 481 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ∧ ((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
205190, 204mpand 711 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (((seq1( · , 𝐹)‘𝑘) · (2 · 𝑁)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
206152, 205sylbid 230 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
207157adantr 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
208 iffalse 4095 . . . . . . . . . . . 12 (¬ (𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑((𝑘 + 1) pCnt ((2 · 𝑁)C𝑁))), 1) = 1)
209169, 208sylan9eq 2676 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = 1)
210209oveq2d 6666 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))) = ((seq1( · , 𝐹)‘𝑘) · 1))
211126adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
212211nncnd 11036 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘𝑘) ∈ ℂ)
213212mulid1d 10057 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) · 1) = (seq1( · , 𝐹)‘𝑘))
214207, 210, 2133eqtrd 2660 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = (seq1( · , 𝐹)‘𝑘))
215 ppinprm 24878 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ ¬ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = (π𝑘))
216144, 215sylan 488 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (π‘(𝑘 + 1)) = (π𝑘))
217216oveq2d 6666 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((2 · 𝑁)↑(π‘(𝑘 + 1))) = ((2 · 𝑁)↑(π𝑘)))
218214, 217breq12d 4666 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))) ↔ (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))))
219218biimprd 238 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
220206, 219pm2.61dan 832 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1)))))
221220expcom 451 . . . . 5 (𝑘 ∈ ℕ → (𝜑 → ((seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘)) → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
222221a2d 29 . . . 4 (𝑘 ∈ ℕ → ((𝜑 → (seq1( · , 𝐹)‘𝑘) ≤ ((2 · 𝑁)↑(π𝑘))) → (𝜑 → (seq1( · , 𝐹)‘(𝑘 + 1)) ≤ ((2 · 𝑁)↑(π‘(𝑘 + 1))))))
22393, 98, 103, 108, 125, 222nnind 11038 . . 3 (𝑀 ∈ ℕ → (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀))))
22474, 223mpcom 38 . 2 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑(π𝑀)))
225 cxpexp 24414 . . . 4 (((2 · 𝑁) ∈ ℂ ∧ (π𝑀) ∈ ℕ0) → ((2 · 𝑁)↑𝑐(π𝑀)) = ((2 · 𝑁)↑(π𝑀)))
226123, 79, 225syl2anc 693 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(π𝑀)) = ((2 · 𝑁)↑(π𝑀)))
22779nn0red 11352 . . . . 5 (𝜑 → (π𝑀) ∈ ℝ)
228 nndivre 11056 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 3 ∈ ℕ) → (𝑀 / 3) ∈ ℝ)
22977, 16, 228sylancl 694 . . . . . 6 (𝜑 → (𝑀 / 3) ∈ ℝ)
230 readdcl 10019 . . . . . 6 (((𝑀 / 3) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝑀 / 3) + 2) ∈ ℝ)
231229, 48, 230sylancl 694 . . . . 5 (𝜑 → ((𝑀 / 3) + 2) ∈ ℝ)
23274nnnn0d 11351 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
233232nn0ge0d 11354 . . . . . 6 (𝜑 → 0 ≤ 𝑀)
234 ppiub 24929 . . . . . 6 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (π𝑀) ≤ ((𝑀 / 3) + 2))
23577, 233, 234syl2anc 693 . . . . 5 (𝜑 → (π𝑀) ≤ ((𝑀 / 3) + 2))
23648a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
237 flle 12600 . . . . . . . . 9 ((√‘(2 · 𝑁)) ∈ ℝ → (⌊‘(√‘(2 · 𝑁))) ≤ (√‘(2 · 𝑁)))
23828, 237syl 17 . . . . . . . 8 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ≤ (√‘(2 · 𝑁)))
23917, 238syl5eqbr 4688 . . . . . . 7 (𝜑𝑀 ≤ (√‘(2 · 𝑁)))
240 3re 11094 . . . . . . . . . 10 3 ∈ ℝ
241 3pos 11114 . . . . . . . . . 10 0 < 3
242240, 241pm3.2i 471 . . . . . . . . 9 (3 ∈ ℝ ∧ 0 < 3)
243242a1i 11 . . . . . . . 8 (𝜑 → (3 ∈ ℝ ∧ 0 < 3))
244 lediv1 10888 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (𝑀 ≤ (√‘(2 · 𝑁)) ↔ (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3)))
24577, 28, 243, 244syl3anc 1326 . . . . . . 7 (𝜑 → (𝑀 ≤ (√‘(2 · 𝑁)) ↔ (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3)))
246239, 245mpbid 222 . . . . . 6 (𝜑 → (𝑀 / 3) ≤ ((√‘(2 · 𝑁)) / 3))
247229, 83, 236, 246leadd1dd 10641 . . . . 5 (𝜑 → ((𝑀 / 3) + 2) ≤ (((√‘(2 · 𝑁)) / 3) + 2))
248227, 231, 85, 235, 247letrd 10194 . . . 4 (𝜑 → (π𝑀) ≤ (((√‘(2 · 𝑁)) / 3) + 2))
249 2t1e2 11176 . . . . . . . 8 (2 · 1) = 2
2506nnge1d 11063 . . . . . . . . 9 (𝜑 → 1 ≤ 𝑁)
251 1re 10039 . . . . . . . . . . 11 1 ∈ ℝ
252 lemul2 10876 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
253251, 50, 252mp3an13 1415 . . . . . . . . . 10 (𝑁 ∈ ℝ → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
25446, 253syl 17 . . . . . . . . 9 (𝜑 → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
255250, 254mpbid 222 . . . . . . . 8 (𝜑 → (2 · 1) ≤ (2 · 𝑁))
256249, 255syl5eqbrr 4689 . . . . . . 7 (𝜑 → 2 ≤ (2 · 𝑁))
25718eluz1i 11695 . . . . . . 7 ((2 · 𝑁) ∈ (ℤ‘2) ↔ ((2 · 𝑁) ∈ ℤ ∧ 2 ≤ (2 · 𝑁)))
25821, 256, 257sylanbrc 698 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ (ℤ‘2))
259 eluz2gt1 11760 . . . . . 6 ((2 · 𝑁) ∈ (ℤ‘2) → 1 < (2 · 𝑁))
260258, 259syl 17 . . . . 5 (𝜑 → 1 < (2 · 𝑁))
26122, 260, 227, 85cxpled 24466 . . . 4 (𝜑 → ((π𝑀) ≤ (((√‘(2 · 𝑁)) / 3) + 2) ↔ ((2 · 𝑁)↑𝑐(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2))))
262248, 261mpbid 222 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
263226, 262eqbrtrrd 4677 . 2 (𝜑 → ((2 · 𝑁)↑(π𝑀)) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
26476, 81, 86, 224, 263letrd 10194 1 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  ifcif 4086   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  5c5 11073  9c9 11077  0cn0 11292  cz 11377  cdc 11493  cuz 11687  ...cfz 12326  cfl 12591  seqcseq 12801  cexp 12860  Ccbc 13089  csqrt 13973  cprime 15385   pCnt cpc 15541  𝑐ccxp 24302  πcppi 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-ppi 24826
This theorem is referenced by:  bposlem6  25014
  Copyright terms: Public domain W3C validator