MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cubic Structured version   Visualization version   Unicode version

Theorem cubic 24576
Description: The cubic equation, which gives the roots of an arbitrary (nondegenerate) cubic function. Use rextp 4241 to convert the existential quantifier to a triple disjunction. This is Metamath 100 proof #37. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
cubic.r  |-  R  =  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }
cubic.a  |-  ( ph  ->  A  e.  CC )
cubic.z  |-  ( ph  ->  A  =/=  0 )
cubic.b  |-  ( ph  ->  B  e.  CC )
cubic.c  |-  ( ph  ->  C  e.  CC )
cubic.d  |-  ( ph  ->  D  e.  CC )
cubic.x  |-  ( ph  ->  X  e.  CC )
cubic.t  |-  ( ph  ->  T  =  ( ( ( N  +  ( sqr `  G ) )  /  2 )  ^c  ( 1  /  3 ) ) )
cubic.g  |-  ( ph  ->  G  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
cubic.m  |-  ( ph  ->  M  =  ( ( B ^ 2 )  -  ( 3  x.  ( A  x.  C
) ) ) )
cubic.n  |-  ( ph  ->  N  =  ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  +  (; 2 7  x.  (
( A ^ 2 )  x.  D ) ) ) )
cubic.0  |-  ( ph  ->  M  =/=  0 )
Assertion
Ref Expression
cubic  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  R  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
Distinct variable groups:    A, r    B, r    M, r    N, r    ph, r    T, r    X, r
Allowed substitution hints:    C( r)    D( r)    R( r)    G( r)

Proof of Theorem cubic
StepHypRef Expression
1 cubic.a . . 3  |-  ( ph  ->  A  e.  CC )
2 cubic.z . . 3  |-  ( ph  ->  A  =/=  0 )
3 cubic.b . . 3  |-  ( ph  ->  B  e.  CC )
4 cubic.c . . 3  |-  ( ph  ->  C  e.  CC )
5 cubic.d . . 3  |-  ( ph  ->  D  e.  CC )
6 cubic.x . . 3  |-  ( ph  ->  X  e.  CC )
7 cubic.t . . . 4  |-  ( ph  ->  T  =  ( ( ( N  +  ( sqr `  G ) )  /  2 )  ^c  ( 1  /  3 ) ) )
8 cubic.n . . . . . . . 8  |-  ( ph  ->  N  =  ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  +  (; 2 7  x.  (
( A ^ 2 )  x.  D ) ) ) )
9 2cn 11091 . . . . . . . . . . 11  |-  2  e.  CC
10 3nn0 11310 . . . . . . . . . . . 12  |-  3  e.  NN0
11 expcl 12878 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ 3 )  e.  CC )
123, 10, 11sylancl 694 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 3 )  e.  CC )
13 mulcl 10020 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  ( B ^ 3 )  e.  CC )  -> 
( 2  x.  ( B ^ 3 ) )  e.  CC )
149, 12, 13sylancr 695 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( B ^ 3 ) )  e.  CC )
15 9cn 11108 . . . . . . . . . . . 12  |-  9  e.  CC
16 mulcl 10020 . . . . . . . . . . . 12  |-  ( ( 9  e.  CC  /\  A  e.  CC )  ->  ( 9  x.  A
)  e.  CC )
1715, 1, 16sylancr 695 . . . . . . . . . . 11  |-  ( ph  ->  ( 9  x.  A
)  e.  CC )
183, 4mulcld 10060 . . . . . . . . . . 11  |-  ( ph  ->  ( B  x.  C
)  e.  CC )
1917, 18mulcld 10060 . . . . . . . . . 10  |-  ( ph  ->  ( ( 9  x.  A )  x.  ( B  x.  C )
)  e.  CC )
2014, 19subcld 10392 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( B ^ 3 ) )  -  (
( 9  x.  A
)  x.  ( B  x.  C ) ) )  e.  CC )
21 2nn0 11309 . . . . . . . . . . . 12  |-  2  e.  NN0
22 7nn 11190 . . . . . . . . . . . 12  |-  7  e.  NN
2321, 22decnncl 11518 . . . . . . . . . . 11  |- ; 2 7  e.  NN
2423nncni 11030 . . . . . . . . . 10  |- ; 2 7  e.  CC
251sqcld 13006 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
2625, 5mulcld 10060 . . . . . . . . . 10  |-  ( ph  ->  ( ( A ^
2 )  x.  D
)  e.  CC )
27 mulcl 10020 . . . . . . . . . 10  |-  ( (; 2
7  e.  CC  /\  ( ( A ^
2 )  x.  D
)  e.  CC )  ->  (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  e.  CC )
2824, 26, 27sylancr 695 . . . . . . . . 9  |-  ( ph  ->  (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  e.  CC )
2920, 28addcld 10059 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( B ^
3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C )
) )  +  (; 2
7  x.  ( ( A ^ 2 )  x.  D ) ) )  e.  CC )
308, 29eqeltrd 2701 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
31 cubic.g . . . . . . . . 9  |-  ( ph  ->  G  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
3230sqcld 13006 . . . . . . . . . 10  |-  ( ph  ->  ( N ^ 2 )  e.  CC )
33 4cn 11098 . . . . . . . . . . 11  |-  4  e.  CC
34 cubic.m . . . . . . . . . . . . 13  |-  ( ph  ->  M  =  ( ( B ^ 2 )  -  ( 3  x.  ( A  x.  C
) ) ) )
353sqcld 13006 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
36 3cn 11095 . . . . . . . . . . . . . . 15  |-  3  e.  CC
371, 4mulcld 10060 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  x.  C
)  e.  CC )
38 mulcl 10020 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  CC  /\  ( A  x.  C
)  e.  CC )  ->  ( 3  x.  ( A  x.  C
) )  e.  CC )
3936, 37, 38sylancr 695 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 3  x.  ( A  x.  C )
)  e.  CC )
4035, 39subcld 10392 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B ^
2 )  -  (
3  x.  ( A  x.  C ) ) )  e.  CC )
4134, 40eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  CC )
42 expcl 12878 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
4341, 10, 42sylancl 694 . . . . . . . . . . 11  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
44 mulcl 10020 . . . . . . . . . . 11  |-  ( ( 4  e.  CC  /\  ( M ^ 3 )  e.  CC )  -> 
( 4  x.  ( M ^ 3 ) )  e.  CC )
4533, 43, 44sylancr 695 . . . . . . . . . 10  |-  ( ph  ->  ( 4  x.  ( M ^ 3 ) )  e.  CC )
4632, 45subcld 10392 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
4  x.  ( M ^ 3 ) ) )  e.  CC )
4731, 46eqeltrd 2701 . . . . . . . 8  |-  ( ph  ->  G  e.  CC )
4847sqrtcld 14176 . . . . . . 7  |-  ( ph  ->  ( sqr `  G
)  e.  CC )
4930, 48addcld 10059 . . . . . 6  |-  ( ph  ->  ( N  +  ( sqr `  G ) )  e.  CC )
5049halfcld 11277 . . . . 5  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  /  2 )  e.  CC )
51 3ne0 11115 . . . . . 6  |-  3  =/=  0
5236, 51reccli 10755 . . . . 5  |-  ( 1  /  3 )  e.  CC
53 cxpcl 24420 . . . . 5  |-  ( ( ( ( N  +  ( sqr `  G ) )  /  2 )  e.  CC  /\  (
1  /  3 )  e.  CC )  -> 
( ( ( N  +  ( sqr `  G
) )  /  2
)  ^c  ( 1  /  3 ) )  e.  CC )
5450, 52, 53sylancl 694 . . . 4  |-  ( ph  ->  ( ( ( N  +  ( sqr `  G
) )  /  2
)  ^c  ( 1  /  3 ) )  e.  CC )
557, 54eqeltrd 2701 . . 3  |-  ( ph  ->  T  e.  CC )
567oveq1d 6665 . . . 4  |-  ( ph  ->  ( T ^ 3 )  =  ( ( ( ( N  +  ( sqr `  G ) )  /  2 )  ^c  ( 1  /  3 ) ) ^ 3 ) )
57 3nn 11186 . . . . 5  |-  3  e.  NN
58 cxproot 24436 . . . . 5  |-  ( ( ( ( N  +  ( sqr `  G ) )  /  2 )  e.  CC  /\  3  e.  NN )  ->  (
( ( ( N  +  ( sqr `  G
) )  /  2
)  ^c  ( 1  /  3 ) ) ^ 3 )  =  ( ( N  +  ( sqr `  G
) )  /  2
) )
5950, 57, 58sylancl 694 . . . 4  |-  ( ph  ->  ( ( ( ( N  +  ( sqr `  G ) )  / 
2 )  ^c 
( 1  /  3
) ) ^ 3 )  =  ( ( N  +  ( sqr `  G ) )  / 
2 ) )
6056, 59eqtrd 2656 . . 3  |-  ( ph  ->  ( T ^ 3 )  =  ( ( N  +  ( sqr `  G ) )  / 
2 ) )
6147sqsqrtd 14178 . . . 4  |-  ( ph  ->  ( ( sqr `  G
) ^ 2 )  =  G )
6261, 31eqtrd 2656 . . 3  |-  ( ph  ->  ( ( sqr `  G
) ^ 2 )  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
639a1i 11 . . . . . 6  |-  ( ph  ->  2  e.  CC )
6433a1i 11 . . . . . . . . 9  |-  ( ph  ->  4  e.  CC )
65 4ne0 11117 . . . . . . . . . 10  |-  4  =/=  0
6665a1i 11 . . . . . . . . 9  |-  ( ph  ->  4  =/=  0 )
67 cubic.0 . . . . . . . . . 10  |-  ( ph  ->  M  =/=  0 )
68 3z 11410 . . . . . . . . . . 11  |-  3  e.  ZZ
6968a1i 11 . . . . . . . . . 10  |-  ( ph  ->  3  e.  ZZ )
7041, 67, 69expne0d 13014 . . . . . . . . 9  |-  ( ph  ->  ( M ^ 3 )  =/=  0 )
7164, 43, 66, 70mulne0d 10679 . . . . . . . 8  |-  ( ph  ->  ( 4  x.  ( M ^ 3 ) )  =/=  0 )
7262oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
( sqr `  G
) ^ 2 ) )  =  ( ( N ^ 2 )  -  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) ) )
73 subsq 12972 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  ( sqr `  G )  e.  CC )  -> 
( ( N ^
2 )  -  (
( sqr `  G
) ^ 2 ) )  =  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G ) ) ) )
7430, 48, 73syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
( sqr `  G
) ^ 2 ) )  =  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G ) ) ) )
7532, 45nncand 10397 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
( N ^ 2 )  -  ( 4  x.  ( M ^
3 ) ) ) )  =  ( 4  x.  ( M ^
3 ) ) )
7672, 74, 753eqtr3d 2664 . . . . . . . 8  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G
) ) )  =  ( 4  x.  ( M ^ 3 ) ) )
7730, 48subcld 10392 . . . . . . . . 9  |-  ( ph  ->  ( N  -  ( sqr `  G ) )  e.  CC )
7877mul02d 10234 . . . . . . . 8  |-  ( ph  ->  ( 0  x.  ( N  -  ( sqr `  G ) ) )  =  0 )
7971, 76, 783netr4d 2871 . . . . . . 7  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G
) ) )  =/=  ( 0  x.  ( N  -  ( sqr `  G ) ) ) )
80 oveq1 6657 . . . . . . . 8  |-  ( ( N  +  ( sqr `  G ) )  =  0  ->  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G ) ) )  =  ( 0  x.  ( N  -  ( sqr `  G ) ) ) )
8180necon3i 2826 . . . . . . 7  |-  ( ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G
) ) )  =/=  ( 0  x.  ( N  -  ( sqr `  G ) ) )  ->  ( N  +  ( sqr `  G ) )  =/=  0 )
8279, 81syl 17 . . . . . 6  |-  ( ph  ->  ( N  +  ( sqr `  G ) )  =/=  0 )
83 2ne0 11113 . . . . . . 7  |-  2  =/=  0
8483a1i 11 . . . . . 6  |-  ( ph  ->  2  =/=  0 )
8549, 63, 82, 84divne0d 10817 . . . . 5  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  /  2 )  =/=  0 )
8652a1i 11 . . . . 5  |-  ( ph  ->  ( 1  /  3
)  e.  CC )
8750, 85, 86cxpne0d 24459 . . . 4  |-  ( ph  ->  ( ( ( N  +  ( sqr `  G
) )  /  2
)  ^c  ( 1  /  3 ) )  =/=  0 )
887, 87eqnetrd 2861 . . 3  |-  ( ph  ->  T  =/=  0 )
891, 2, 3, 4, 5, 6, 55, 60, 48, 62, 34, 8, 88cubic2 24575 . 2  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  CC  (
( r ^ 3 )  =  1  /\  X  =  -u (
( ( B  +  ( r  x.  T
) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) ) ) )
90 cubic.r . . . . . 6  |-  R  =  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }
91901cubr 24569 . . . . 5  |-  ( r  e.  R  <->  ( r  e.  CC  /\  ( r ^ 3 )  =  1 ) )
9291anbi1i 731 . . . 4  |-  ( ( r  e.  R  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) )  <-> 
( ( r  e.  CC  /\  ( r ^ 3 )  =  1 )  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
93 anass 681 . . . 4  |-  ( ( ( r  e.  CC  /\  ( r ^ 3 )  =  1 )  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  (
r  x.  T ) ) )  /  (
3  x.  A ) ) )  <->  ( r  e.  CC  /\  ( ( r ^ 3 )  =  1  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) ) )
9492, 93bitri 264 . . 3  |-  ( ( r  e.  R  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) )  <-> 
( r  e.  CC  /\  ( ( r ^
3 )  =  1  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  (
r  x.  T ) ) )  /  (
3  x.  A ) ) ) ) )
9594rexbii2 3039 . 2  |-  ( E. r  e.  R  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) )  <->  E. r  e.  CC  ( ( r ^ 3 )  =  1  /\  X  = 
-u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
9689, 95syl6bbr 278 1  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  R  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {ctp 4181   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   7c7 11075   9c9 11077   NN0cn0 11292   ZZcz 11377  ;cdc 11493   ^cexp 12860   sqrcsqrt 13973    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator