MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblabslem Structured version   Visualization version   Unicode version

Theorem iblabslem 23594
Description: Lemma for iblabs 23595. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
iblabs.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
iblabs.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
iblabs.3  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
iblabs.4  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e.  L^1 )
iblabs.5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  RR )
Assertion
Ref Expression
iblabslem  |-  ( ph  ->  ( G  e. MblFn  /\  ( S.2 `  G )  e.  RR ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    F( x)    G( x)    V( x)

Proof of Theorem iblabslem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iblabs.3 . . 3  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
2 iblabs.4 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e.  L^1 )
3 iblabs.5 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  RR )
43iblrelem 23557 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  ( F `  B ) )  e.  L^1  <->  ( (
x  e.  A  |->  ( F `  B ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR ) ) )
52, 4mpbid 222 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( F `  B ) )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR ) )
65simp1d 1073 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e. MblFn )
76, 3mbfdm2 23405 . . . . 5  |-  ( ph  ->  A  e.  dom  vol )
8 mblss 23299 . . . . 5  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
97, 8syl 17 . . . 4  |-  ( ph  ->  A  C_  RR )
10 rembl 23308 . . . . 5  |-  RR  e.  dom  vol
1110a1i 11 . . . 4  |-  ( ph  ->  RR  e.  dom  vol )
12 iftrue 4092 . . . . . 6  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  ( abs `  ( F `  B )
) )
1312adantl 482 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  ( abs `  ( F `  B )
) )
143recnd 10068 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  CC )
1514abscld 14175 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( F `  B ) )  e.  RR )
1613, 15eqeltrd 2701 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  e.  RR )
17 eldifn 3733 . . . . . 6  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
1817adantl 482 . . . . 5  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
19 iffalse 4095 . . . . 5  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  0 )
2018, 19syl 17 . . . 4  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
x  e.  A , 
( abs `  ( F `  B )
) ,  0 )  =  0 )
21 eqidd 2623 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  =  ( x  e.  A  |->  ( F `  B ) ) )
22 absf 14077 . . . . . . . . 9  |-  abs : CC
--> RR
2322a1i 11 . . . . . . . 8  |-  ( ph  ->  abs : CC --> RR )
2423feqmptd 6249 . . . . . . 7  |-  ( ph  ->  abs  =  ( y  e.  CC  |->  ( abs `  y ) ) )
25 fveq2 6191 . . . . . . 7  |-  ( y  =  ( F `  B )  ->  ( abs `  y )  =  ( abs `  ( F `  B )
) )
2614, 21, 24, 25fmptco 6396 . . . . . 6  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  ( F `  B ) ) )  =  ( x  e.  A  |->  ( abs `  ( F `
 B ) ) ) )
2712mpteq2ia 4740 . . . . . 6  |-  ( x  e.  A  |->  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )  =  ( x  e.  A  |->  ( abs `  ( F `  B
) ) )
2826, 27syl6reqr 2675 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  if ( x  e.  A ,  ( abs `  ( F `  B
) ) ,  0 ) )  =  ( abs  o.  ( x  e.  A  |->  ( F `
 B ) ) ) )
29 eqid 2622 . . . . . . 7  |-  ( x  e.  A  |->  ( F `
 B ) )  =  ( x  e.  A  |->  ( F `  B ) )
3014, 29fmptd 6385 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) ) : A --> CC )
31 ax-resscn 9993 . . . . . . . . 9  |-  RR  C_  CC
32 ssid 3624 . . . . . . . . 9  |-  CC  C_  CC
33 cncfss 22702 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
3431, 32, 33mp2an 708 . . . . . . . 8  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
35 abscncf 22704 . . . . . . . 8  |-  abs  e.  ( CC -cn-> RR )
3634, 35sselii 3600 . . . . . . 7  |-  abs  e.  ( CC -cn-> CC )
3736a1i 11 . . . . . 6  |-  ( ph  ->  abs  e.  ( CC
-cn-> CC ) )
38 cncombf 23425 . . . . . 6  |-  ( ( ( x  e.  A  |->  ( F `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( F `  B ) ) : A --> CC  /\  abs  e.  ( CC -cn-> CC ) )  ->  ( abs  o.  ( x  e.  A  |->  ( F `  B ) ) )  e. MblFn )
396, 30, 37, 38syl3anc 1326 . . . . 5  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  ( F `  B ) ) )  e. MblFn )
4028, 39eqeltrd 2701 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  if ( x  e.  A ,  ( abs `  ( F `  B
) ) ,  0 ) )  e. MblFn )
419, 11, 16, 20, 40mbfss 23413 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )  e. MblFn )
421, 41syl5eqel 2705 . 2  |-  ( ph  ->  G  e. MblFn )
43 reex 10027 . . . . . . . . 9  |-  RR  e.  _V
4443a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  e.  _V )
45 ifan 4134 . . . . . . . . . 10  |-  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )
46 0re 10040 . . . . . . . . . . . . 13  |-  0  e.  RR
47 ifcl 4130 . . . . . . . . . . . . 13  |-  ( ( ( F `  B
)  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 )  e.  RR )
483, 46, 47sylancl 694 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  RR )
49 max1 12016 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( F `  B )  e.  RR )  -> 
0  <_  if (
0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
5046, 3, 49sylancr 695 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) )
51 elrege0 12278 . . . . . . . . . . . 12  |-  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ) )
5248, 50, 51sylanbrc 698 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
53 0e0icopnf 12282 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,) +oo )
5453a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
5552, 54ifclda 4120 . . . . . . . . . 10  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  e.  ( 0 [,) +oo )
)
5645, 55syl5eqel 2705 . . . . . . . . 9  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
5756adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
58 ifan 4134 . . . . . . . . . 10  |-  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ,  0 )
593renegcld 10457 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  -u ( F `  B )  e.  RR )
60 ifcl 4130 . . . . . . . . . . . . 13  |-  ( (
-u ( F `  B )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR )
6159, 46, 60sylancl 694 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR )
62 max1 12016 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  -u ( F `  B
)  e.  RR )  ->  0  <_  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
6346, 59, 62sylancr 695 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) )
64 elrege0 12278 . . . . . . . . . . . 12  |-  ( if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ) )
6561, 63, 64sylanbrc 698 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
6665, 54ifclda 4120 . . . . . . . . . 10  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ,  0 )  e.  ( 0 [,) +oo ) )
6758, 66syl5eqel 2705 . . . . . . . . 9  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
6867adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
69 eqidd 2623 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) ) )
70 eqidd 2623 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) )
7144, 57, 68, 69, 70offval2 6914 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) ) )
7245, 58oveq12i 6662 . . . . . . . . 9  |-  ( if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )  =  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 ) )
73 max0add 14050 . . . . . . . . . . . . 13  |-  ( ( F `  B )  e.  RR  ->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) )  =  ( abs `  ( F `
 B ) ) )
743, 73syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) )  =  ( abs `  ( F `
 B ) ) )
75 iftrue 4092 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
7675adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
77 iftrue 4092 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
7877adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
7976, 78oveq12d 6668 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ) )
8074, 79, 133eqtr4d 2666 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
8180ex 450 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  ->  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) ) )
82 00id 10211 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
83 iffalse 4095 . . . . . . . . . . . 12  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  0 )
84 iffalse 4095 . . . . . . . . . . . 12  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  0 )
8583, 84oveq12d 6668 . . . . . . . . . . 11  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  ( 0  +  0 ) )
8682, 85, 193eqtr4a 2682 . . . . . . . . . 10  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
8781, 86pm2.61d1 171 . . . . . . . . 9  |-  ( ph  ->  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
8872, 87syl5eq 2668 . . . . . . . 8  |-  ( ph  ->  ( if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 )  +  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )  =  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
8988mpteq2dv 4745 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) ) )
9071, 89eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) ) )
9190, 1syl6reqr 2675 . . . . 5  |-  ( ph  ->  G  =  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )
9291fveq2d 6195 . . . 4  |-  ( ph  ->  ( S.2 `  G
)  =  ( S.2 `  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
9356adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
9445, 83syl5eq 2668 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  =  0 )
9518, 94syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  =  0 )
96 ibar 525 . . . . . . . . 9  |-  ( x  e.  A  ->  (
0  <_  ( F `  B )  <->  ( x  e.  A  /\  0  <_  ( F `  B
) ) ) )
9796ifbid 4108 . . . . . . . 8  |-  ( x  e.  A  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) )
9897mpteq2ia 4740 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )
993, 6mbfpos 23418 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) )  e. MblFn
)
10098, 99syl5eqelr 2706 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 ) )  e. MblFn )
1019, 11, 93, 95, 100mbfss 23413 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  e. MblFn )
102 eqid 2622 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )
10357, 102fmptd 6385 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
1045simp2d 1074 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  e.  RR )
10567adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
10658, 84syl5eq 2668 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 )  =  0 )
10718, 106syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 )  =  0 )
108 ibar 525 . . . . . . . . 9  |-  ( x  e.  A  ->  (
0  <_  -u ( F `
 B )  <->  ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) ) )
109108ifbid 4108 . . . . . . . 8  |-  ( x  e.  A  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 ) )
110109mpteq2ia 4740 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) )
1113, 6mbfneg 23417 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |-> 
-u ( F `  B ) )  e. MblFn
)
11259, 111mbfpos 23418 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) )  e. MblFn )
113110, 112syl5eqelr 2706 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )  e. MblFn )
1149, 11, 105, 107, 113mbfss 23413 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) )  e. MblFn )
115 eqid 2622 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )
11668, 115fmptd 6385 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
1175simp3d 1075 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR )
118101, 103, 104, 114, 116, 117itg2add 23526 . . . 4  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
11992, 118eqtrd 2656 . . 3  |-  ( ph  ->  ( S.2 `  G
)  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
120104, 117readdcld 10069 . . 3  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )  e.  RR )
121119, 120eqeltrd 2701 . 2  |-  ( ph  ->  ( S.2 `  G
)  e.  RR )
12242, 121jca 554 1  |-  ( ph  ->  ( G  e. MblFn  /\  ( S.2 `  G )  e.  RR ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939   +oocpnf 10071    <_ cle 10075   -ucneg 10267   [,)cico 12177   abscabs 13974   -cn->ccncf 22679   volcvol 23232  MblFncmbf 23383   S.2citg2 23385   L^1cibl 23386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-0p 23437
This theorem is referenced by:  iblabs  23595
  Copyright terms: Public domain W3C validator