MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcn Structured version   Visualization version   Unicode version

Theorem itgcn 23609
Description: Transfer itg2cn 23530 to the full Lebesgue integral. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itgcn.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgcn.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
itgcn.3  |-  ( ph  ->  C  e.  RR+ )
Assertion
Ref Expression
itgcn  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( u  C_  A  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  B )  _d x  <  C ) )
Distinct variable groups:    u, d, x, A    B, d, u    C, d, u    ph, d, u, x
Allowed substitution hints:    B( x)    C( x)    V( x, u, d)

Proof of Theorem itgcn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 itgcn.2 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
2 iblmbf 23534 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
31, 2syl 17 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
4 itgcn.1 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
53, 4mbfmptcl 23404 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
65abscld 14175 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
75absge0d 14183 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
8 elrege0 12278 . . . . . . 7  |-  ( ( abs `  B )  e.  ( 0 [,) +oo )  <->  ( ( abs `  B )  e.  RR  /\  0  <_  ( abs `  B ) ) )
96, 7, 8sylanbrc 698 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  ( 0 [,) +oo ) )
10 0e0icopnf 12282 . . . . . . 7  |-  0  e.  ( 0 [,) +oo )
1110a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
129, 11ifclda 4120 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
1312adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  ( 0 [,) +oo ) )
14 eqid 2622 . . . 4  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )
1513, 14fmptd 6385 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
163, 4mbfdm2 23405 . . . . 5  |-  ( ph  ->  A  e.  dom  vol )
17 mblss 23299 . . . . 5  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
1816, 17syl 17 . . . 4  |-  ( ph  ->  A  C_  RR )
19 rembl 23308 . . . . 5  |-  RR  e.  dom  vol
2019a1i 11 . . . 4  |-  ( ph  ->  RR  e.  dom  vol )
2112adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  e.  ( 0 [,) +oo ) )
22 eldifn 3733 . . . . . 6  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
2322adantl 482 . . . . 5  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
2423iffalsed 4097 . . . 4  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
x  e.  A , 
( abs `  B
) ,  0 )  =  0 )
25 iftrue 4092 . . . . . 6  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
) )
2625mpteq2ia 4740 . . . . 5  |-  ( x  e.  A  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  A  |->  ( abs `  B ) )
274, 1iblabs 23595 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
286, 7iblpos 23559 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e.  L^1 
<->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) ) )
2927, 28mpbid 222 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) )
3029simpld 475 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e. MblFn )
3126, 30syl5eqel 2705 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )  e. MblFn )
3218, 20, 21, 24, 31mbfss 23413 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  e. MblFn )
3329simprd 479 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  e.  RR )
34 itgcn.3 . . 3  |-  ( ph  ->  C  e.  RR+ )
3515, 32, 33, 34itg2cn 23530 . 2  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C ) )
36 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  u  C_  A )
3736sselda 3603 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  u )  ->  x  e.  A )
385adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  A )  ->  B  e.  CC )
3937, 38syldan 487 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  u )  ->  B  e.  CC )
4039abscld 14175 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  u )  ->  ( abs `  B )  e.  RR )
41 simprl 794 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  u  e.  dom  vol )
4238abscld 14175 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
4327adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  A  |->  ( abs `  B
) )  e.  L^1 )
4436, 41, 42, 43iblss 23571 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  u  |->  ( abs `  B
) )  e.  L^1 )
4539absge0d 14183 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  dom  vol  /\  u  C_  A )
)  /\  x  e.  u )  ->  0  <_  ( abs `  B
) )
4640, 44, 45itgposval 23562 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  S. u ( abs `  B
)  _d x  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  u ,  ( abs `  B
) ,  0 ) ) ) )
4736sseld 3602 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  u  ->  x  e.  A ) )
4847pm4.71d 666 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  u  <->  ( x  e.  u  /\  x  e.  A )
) )
4948ifbid 4108 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  if ( x  e.  u ,  ( abs `  B
) ,  0 )  =  if ( ( x  e.  u  /\  x  e.  A ) ,  ( abs `  B
) ,  0 ) )
50 ifan 4134 . . . . . . . . . . . . . . 15  |-  if ( ( x  e.  u  /\  x  e.  A
) ,  ( abs `  B ) ,  0 )  =  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 )
5149, 50syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  if ( x  e.  u ,  ( abs `  B
) ,  0 )  =  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ,  0 ) )
5251mpteq2dv 4745 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( x  e.  RR  |->  if ( x  e.  u ,  ( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) ) )
5352fveq2d 6195 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( abs `  B
) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) ) ) )
5446, 53eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  S. u ( abs `  B
)  _d x  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) ) ) )
55 nfv 1843 . . . . . . . . . . . . . . 15  |-  F/ x  y  e.  u
56 nffvmpt1 6199 . . . . . . . . . . . . . . 15  |-  F/_ x
( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y )
57 nfcv 2764 . . . . . . . . . . . . . . 15  |-  F/_ x
0
5855, 56, 57nfif 4115 . . . . . . . . . . . . . 14  |-  F/_ x if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 )
59 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ y if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  x ) ,  0 )
60 elequ1 1997 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
y  e.  u  <->  x  e.  u ) )
61 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) `  y )  =  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  x ) )
6260, 61ifbieq1d 4109 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 )  =  if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) `  x ) ,  0 ) )
6358, 59, 62cbvmpt 4749 . . . . . . . . . . . . 13  |-  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  x ) ,  0 ) )
64 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( abs `  B )  e.  _V
65 c0ex 10034 . . . . . . . . . . . . . . . . 17  |-  0  e.  _V
6664, 65ifex 4156 . . . . . . . . . . . . . . . 16  |-  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  _V
6714fvmpt2 6291 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  if ( x  e.  A ,  ( abs `  B
) ,  0 )  e.  _V )  -> 
( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 x )  =  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )
6866, 67mpan2 707 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) `  x )  =  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )
6968ifeq1d 4104 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  x ) ,  0 )  =  if ( x  e.  u ,  if ( x  e.  A , 
( abs `  B
) ,  0 ) ,  0 ) )
7069mpteq2ia 4740 . . . . . . . . . . . . 13  |-  ( x  e.  RR  |->  if ( x  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) )
7163, 70eqtri 2644 . . . . . . . . . . . 12  |-  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) )
7271fveq2i 6194 . . . . . . . . . . 11  |-  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ,  0 ) ) )
7354, 72syl6eqr 2674 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  ->  S. u ( abs `  B
)  _d x  =  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) ) )
7473breq1d 4663 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( S. u ( abs `  B )  _d x  <  C  <->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C ) )
7574biimprd 238 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) )  <  C  ->  S. u ( abs `  B
)  _d x  < 
C ) )
7675imim2d 57 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  dom  vol  /\  u  C_  A ) )  -> 
( ( ( vol `  u )  <  d  ->  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) )  <  C )  ->  ( ( vol `  u )  <  d  ->  S. u ( abs `  B )  _d x  <  C ) ) )
7776expr 643 . . . . . 6  |-  ( (
ph  /\  u  e.  dom  vol )  ->  (
u  C_  A  ->  ( ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C )  -> 
( ( vol `  u
)  <  d  ->  S. u ( abs `  B
)  _d x  < 
C ) ) ) )
7877com23 86 . . . . 5  |-  ( (
ph  /\  u  e.  dom  vol )  ->  (
( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C )  -> 
( u  C_  A  ->  ( ( vol `  u
)  <  d  ->  S. u ( abs `  B
)  _d x  < 
C ) ) ) )
7978imp4a 614 . . . 4  |-  ( (
ph  /\  u  e.  dom  vol )  ->  (
( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C )  -> 
( ( u  C_  A  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  B )  _d x  <  C ) ) )
8079ralimdva 2962 . . 3  |-  ( ph  ->  ( A. u  e. 
dom  vol ( ( vol `  u )  <  d  ->  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) `  y ) ,  0 ) ) )  <  C )  ->  A. u  e.  dom  vol ( ( u  C_  A  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  B )  _d x  <  C ) ) )
8180reximdv 3016 . 2  |-  ( ph  ->  ( E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) `
 y ) ,  0 ) ) )  <  C )  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( u  C_  A  /\  ( vol `  u )  <  d )  ->  S. u ( abs `  B
)  _d x  < 
C ) ) )
8235, 81mpd 15 1  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( u  C_  A  /\  ( vol `  u
)  <  d )  ->  S. u ( abs `  B )  _d x  <  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   +oocpnf 10071    < clt 10074    <_ cle 10075   RR+crp 11832   [,)cico 12177   abscabs 13974   volcvol 23232  MblFncmbf 23383   S.2citg2 23385   L^1cibl 23386   S.citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437
This theorem is referenced by:  ftc1a  23800
  Copyright terms: Public domain W3C validator