MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sum2dchr Structured version   Visualization version   Unicode version

Theorem sum2dchr 24999
Description: An orthogonality relation for Dirichlet characters: the sum of  x ( A ) for fixed  A and all  x is  0 if  A  =  1 and  phi ( n ) otherwise. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sum2dchr.g  |-  G  =  (DChr `  N )
sum2dchr.d  |-  D  =  ( Base `  G
)
sum2dchr.z  |-  Z  =  (ℤ/n `  N )
sum2dchr.b  |-  B  =  ( Base `  Z
)
sum2dchr.u  |-  U  =  (Unit `  Z )
sum2dchr.n  |-  ( ph  ->  N  e.  NN )
sum2dchr.a  |-  ( ph  ->  A  e.  B )
sum2dchr.c  |-  ( ph  ->  C  e.  U )
Assertion
Ref Expression
sum2dchr  |-  ( ph  -> 
sum_ x  e.  D  ( ( x `  A )  x.  (
* `  ( x `  C ) ) )  =  if ( A  =  C ,  ( phi `  N ) ,  0 ) )
Distinct variable groups:    x, A    x, C    x, D    x, G    x, N    ph, x    x, Z
Allowed substitution hints:    B( x)    U( x)

Proof of Theorem sum2dchr
StepHypRef Expression
1 sum2dchr.g . . 3  |-  G  =  (DChr `  N )
2 sum2dchr.d . . 3  |-  D  =  ( Base `  G
)
3 sum2dchr.z . . 3  |-  Z  =  (ℤ/n `  N )
4 eqid 2622 . . 3  |-  ( 1r
`  Z )  =  ( 1r `  Z
)
5 sum2dchr.b . . 3  |-  B  =  ( Base `  Z
)
6 sum2dchr.n . . 3  |-  ( ph  ->  N  e.  NN )
76nnnn0d 11351 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
83zncrng 19893 . . . . 5  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
9 crngring 18558 . . . . 5  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
107, 8, 93syl 18 . . . 4  |-  ( ph  ->  Z  e.  Ring )
11 sum2dchr.a . . . 4  |-  ( ph  ->  A  e.  B )
12 sum2dchr.c . . . 4  |-  ( ph  ->  C  e.  U )
13 sum2dchr.u . . . . 5  |-  U  =  (Unit `  Z )
14 eqid 2622 . . . . 5  |-  (/r `  Z
)  =  (/r `  Z
)
155, 13, 14dvrcl 18686 . . . 4  |-  ( ( Z  e.  Ring  /\  A  e.  B  /\  C  e.  U )  ->  ( A (/r `  Z ) C )  e.  B )
1610, 11, 12, 15syl3anc 1326 . . 3  |-  ( ph  ->  ( A (/r `  Z
) C )  e.  B )
171, 2, 3, 4, 5, 6, 16sumdchr 24997 . 2  |-  ( ph  -> 
sum_ x  e.  D  ( x `  ( A (/r `  Z ) C ) )  =  if ( ( A (/r `  Z ) C )  =  ( 1r `  Z ) ,  ( phi `  N ) ,  0 ) )
18 eqid 2622 . . . . . . . 8  |-  ( .r
`  Z )  =  ( .r `  Z
)
19 eqid 2622 . . . . . . . 8  |-  ( invr `  Z )  =  (
invr `  Z )
205, 18, 13, 19, 14dvrval 18685 . . . . . . 7  |-  ( ( A  e.  B  /\  C  e.  U )  ->  ( A (/r `  Z
) C )  =  ( A ( .r
`  Z ) ( ( invr `  Z
) `  C )
) )
2111, 12, 20syl2anc 693 . . . . . 6  |-  ( ph  ->  ( A (/r `  Z
) C )  =  ( A ( .r
`  Z ) ( ( invr `  Z
) `  C )
) )
2221adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  ( A (/r `  Z ) C )  =  ( A ( .r `  Z
) ( ( invr `  Z ) `  C
) ) )
2322fveq2d 6195 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
x `  ( A
(/r `  Z ) C ) )  =  ( x `  ( A ( .r `  Z
) ( ( invr `  Z ) `  C
) ) ) )
241, 3, 2dchrmhm 24966 . . . . . 6  |-  D  C_  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )
25 simpr 477 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  x  e.  D )
2624, 25sseldi 3601 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  x  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) ) )
2711adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  B )
285, 13unitss 18660 . . . . . 6  |-  U  C_  B
2913, 19unitinvcl 18674 . . . . . . . 8  |-  ( ( Z  e.  Ring  /\  C  e.  U )  ->  (
( invr `  Z ) `  C )  e.  U
)
3010, 12, 29syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( invr `  Z
) `  C )  e.  U )
3130adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  (
( invr `  Z ) `  C )  e.  U
)
3228, 31sseldi 3601 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  (
( invr `  Z ) `  C )  e.  B
)
33 eqid 2622 . . . . . . 7  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
3433, 5mgpbas 18495 . . . . . 6  |-  B  =  ( Base `  (mulGrp `  Z ) )
3533, 18mgpplusg 18493 . . . . . 6  |-  ( .r
`  Z )  =  ( +g  `  (mulGrp `  Z ) )
36 eqid 2622 . . . . . . 7  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
37 cnfldmul 19752 . . . . . . 7  |-  x.  =  ( .r ` fld )
3836, 37mgpplusg 18493 . . . . . 6  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
3934, 35, 38mhmlin 17342 . . . . 5  |-  ( ( x  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  A  e.  B  /\  ( ( invr `  Z ) `  C
)  e.  B )  ->  ( x `  ( A ( .r `  Z ) ( (
invr `  Z ) `  C ) ) )  =  ( ( x `
 A )  x.  ( x `  (
( invr `  Z ) `  C ) ) ) )
4026, 27, 32, 39syl3anc 1326 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
x `  ( A
( .r `  Z
) ( ( invr `  Z ) `  C
) ) )  =  ( ( x `  A )  x.  (
x `  ( ( invr `  Z ) `  C ) ) ) )
41 eqid 2622 . . . . . . . 8  |-  ( (mulGrp `  Z )s  U )  =  ( (mulGrp `  Z )s  U
)
42 eqid 2622 . . . . . . . 8  |-  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )  =  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )
431, 3, 2, 13, 41, 42, 25dchrghm 24981 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
x  |`  U )  e.  ( ( (mulGrp `  Z )s  U )  GrpHom  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) )
4412adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  C  e.  U )
4513, 41unitgrpbas 18666 . . . . . . . 8  |-  U  =  ( Base `  (
(mulGrp `  Z )s  U
) )
4613, 41, 19invrfval 18673 . . . . . . . 8  |-  ( invr `  Z )  =  ( invg `  (
(mulGrp `  Z )s  U
) )
47 cnfldbas 19750 . . . . . . . . . 10  |-  CC  =  ( Base ` fld )
48 cnfld0 19770 . . . . . . . . . 10  |-  0  =  ( 0g ` fld )
49 cndrng 19775 . . . . . . . . . 10  |-fld  e.  DivRing
5047, 48, 49drngui 18753 . . . . . . . . 9  |-  ( CC 
\  { 0 } )  =  (Unit ` fld )
51 eqid 2622 . . . . . . . . 9  |-  ( invr ` fld )  =  ( invr ` fld )
5250, 42, 51invrfval 18673 . . . . . . . 8  |-  ( invr ` fld )  =  ( invg `  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) )
5345, 46, 52ghminv 17667 . . . . . . 7  |-  ( ( ( x  |`  U )  e.  ( ( (mulGrp `  Z )s  U )  GrpHom  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) )  /\  C  e.  U
)  ->  ( (
x  |`  U ) `  ( ( invr `  Z
) `  C )
)  =  ( (
invr ` fld ) `  ( ( x  |`  U ) `  C ) ) )
5443, 44, 53syl2anc 693 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  (
( x  |`  U ) `
 ( ( invr `  Z ) `  C
) )  =  ( ( invr ` fld ) `  ( ( x  |`  U ) `  C ) ) )
55 fvres 6207 . . . . . . 7  |-  ( ( ( invr `  Z
) `  C )  e.  U  ->  ( ( x  |`  U ) `  ( ( invr `  Z
) `  C )
)  =  ( x `
 ( ( invr `  Z ) `  C
) ) )
5631, 55syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  (
( x  |`  U ) `
 ( ( invr `  Z ) `  C
) )  =  ( x `  ( (
invr `  Z ) `  C ) ) )
57 fvres 6207 . . . . . . . . 9  |-  ( C  e.  U  ->  (
( x  |`  U ) `
 C )  =  ( x `  C
) )
5844, 57syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
( x  |`  U ) `
 C )  =  ( x `  C
) )
5958fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
( invr ` fld ) `  ( ( x  |`  U ) `  C ) )  =  ( ( invr ` fld ) `  ( x `
 C ) ) )
601, 3, 2, 5, 25dchrf 24967 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  D )  ->  x : B --> CC )
6128, 44sseldi 3601 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  D )  ->  C  e.  B )
6260, 61ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
x `  C )  e.  CC )
631, 3, 2, 5, 13, 25, 61dchrn0 24975 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  D )  ->  (
( x `  C
)  =/=  0  <->  C  e.  U ) )
6444, 63mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
x `  C )  =/=  0 )
65 cnfldinv 19777 . . . . . . . 8  |-  ( ( ( x `  C
)  e.  CC  /\  ( x `  C
)  =/=  0 )  ->  ( ( invr ` fld ) `  ( x `  C ) )  =  ( 1  /  (
x `  C )
) )
6662, 64, 65syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
( invr ` fld ) `  ( x `
 C ) )  =  ( 1  / 
( x `  C
) ) )
67 recval 14062 . . . . . . . . 9  |-  ( ( ( x `  C
)  e.  CC  /\  ( x `  C
)  =/=  0 )  ->  ( 1  / 
( x `  C
) )  =  ( ( * `  (
x `  C )
)  /  ( ( abs `  ( x `
 C ) ) ^ 2 ) ) )
6862, 64, 67syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
1  /  ( x `
 C ) )  =  ( ( * `
 ( x `  C ) )  / 
( ( abs `  (
x `  C )
) ^ 2 ) ) )
691, 2, 25, 3, 13, 44dchrabs 24985 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  D )  ->  ( abs `  ( x `  C ) )  =  1 )
7069oveq1d 6665 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  D )  ->  (
( abs `  (
x `  C )
) ^ 2 )  =  ( 1 ^ 2 ) )
71 sq1 12958 . . . . . . . . . 10  |-  ( 1 ^ 2 )  =  1
7270, 71syl6eq 2672 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  D )  ->  (
( abs `  (
x `  C )
) ^ 2 )  =  1 )
7372oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
( * `  (
x `  C )
)  /  ( ( abs `  ( x `
 C ) ) ^ 2 ) )  =  ( ( * `
 ( x `  C ) )  / 
1 ) )
7462cjcld 13936 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  D )  ->  (
* `  ( x `  C ) )  e.  CC )
7574div1d 10793 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
( * `  (
x `  C )
)  /  1 )  =  ( * `  ( x `  C
) ) )
7668, 73, 753eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
1  /  ( x `
 C ) )  =  ( * `  ( x `  C
) ) )
7759, 66, 763eqtrd 2660 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  (
( invr ` fld ) `  ( ( x  |`  U ) `  C ) )  =  ( * `  (
x `  C )
) )
7854, 56, 773eqtr3d 2664 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  (
x `  ( ( invr `  Z ) `  C ) )  =  ( * `  (
x `  C )
) )
7978oveq2d 6666 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( x `  A
)  x.  ( x `
 ( ( invr `  Z ) `  C
) ) )  =  ( ( x `  A )  x.  (
* `  ( x `  C ) ) ) )
8023, 40, 793eqtrd 2660 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  (
x `  ( A
(/r `  Z ) C ) )  =  ( ( x `  A
)  x.  ( * `
 ( x `  C ) ) ) )
8180sumeq2dv 14433 . 2  |-  ( ph  -> 
sum_ x  e.  D  ( x `  ( A (/r `  Z ) C ) )  =  sum_ x  e.  D  ( ( x `  A )  x.  ( * `  ( x `  C
) ) ) )
825, 13, 14, 4dvreq1 18693 . . . 4  |-  ( ( Z  e.  Ring  /\  A  e.  B  /\  C  e.  U )  ->  (
( A (/r `  Z
) C )  =  ( 1r `  Z
)  <->  A  =  C
) )
8310, 11, 12, 82syl3anc 1326 . . 3  |-  ( ph  ->  ( ( A (/r `  Z ) C )  =  ( 1r `  Z )  <->  A  =  C ) )
8483ifbid 4108 . 2  |-  ( ph  ->  if ( ( A (/r `  Z ) C )  =  ( 1r
`  Z ) ,  ( phi `  N
) ,  0 )  =  if ( A  =  C ,  ( phi `  N ) ,  0 ) )
8517, 81, 843eqtr3d 2664 1  |-  ( ph  -> 
sum_ x  e.  D  ( ( x `  A )  x.  (
* `  ( x `  C ) ) )  =  if ( A  =  C ,  ( phi `  N ) ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   ifcif 4086   {csn 4177    |` cres 5116   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ^cexp 12860   *ccj 13836   abscabs 13974   sum_csu 14416   phicphi 15469   Basecbs 15857   ↾s cress 15858   .rcmulr 15942   MndHom cmhm 17333    GrpHom cghm 17657  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547   CRingccrg 18548  Unitcui 18639   invrcinvr 18671  /rcdvr 18682  ℂfldccnfld 19746  ℤ/nczn 19851  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-gim 17701  df-ga 17723  df-cntz 17750  df-oppg 17776  df-od 17948  df-gex 17949  df-pgp 17950  df-lsm 18051  df-pj1 18052  df-cmn 18195  df-abl 18196  df-cyg 18280  df-dprd 18394  df-dpj 18395  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-0p 23437  df-limc 23630  df-dv 23631  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046  df-log 24303  df-cxp 24304  df-dchr 24958
This theorem is referenced by:  rpvmasum2  25201
  Copyright terms: Public domain W3C validator