Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem78 Structured version   Visualization version   GIF version

Theorem fourierdlem78 40401
Description: 𝐺 is continuous when restricted on an interval not containing 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem78.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem78.a (𝜑𝐴 ∈ (-π[,]π))
fourierdlem78.b (𝜑𝐵 ∈ (-π[,]π))
fourierdlem78.x (𝜑𝑋 ∈ ℝ)
fourierdlem78.nxelab (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem78.fcn (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
fourierdlem78.y (𝜑𝑌 ∈ ℝ)
fourierdlem78.w (𝜑𝑊 ∈ ℝ)
fourierdlem78.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem78.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem78.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem78.n (𝜑𝑁 ∈ ℝ)
fourierdlem78.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
fourierdlem78.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
Assertion
Ref Expression
fourierdlem78 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐹,𝑠   𝑁,𝑠   𝑊,𝑠   𝑋,𝑠   𝑌,𝑠   𝜑,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝑈(𝑠)   𝐺(𝑠)   𝐻(𝑠)   𝐾(𝑠)

Proof of Theorem fourierdlem78
StepHypRef Expression
1 fourierdlem78.g . . . . 5 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
21a1i 11 . . . 4 (𝜑𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))))
32reseq1d 5395 . . 3 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = ((𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) ↾ (𝐴(,)𝐵)))
4 pire 24210 . . . . . . . . 9 π ∈ ℝ
54renegcli 10342 . . . . . . . 8 -π ∈ ℝ
65a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ∈ ℝ)
74a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → π ∈ ℝ)
8 elioore 12205 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
98adantl 482 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
105a1i 11 . . . . . . . . . . . 12 (𝜑 → -π ∈ ℝ)
114a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℝ)
1210, 11iccssred 39727 . . . . . . . . . . 11 (𝜑 → (-π[,]π) ⊆ ℝ)
13 fourierdlem78.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (-π[,]π))
1412, 13sseldd 3604 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1514adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
165, 4elicc2i 12239 . . . . . . . . . . . 12 (𝐴 ∈ (-π[,]π) ↔ (𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π))
1716simp2bi 1077 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → -π ≤ 𝐴)
1813, 17syl 17 . . . . . . . . . 10 (𝜑 → -π ≤ 𝐴)
1918adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝐴)
2015rexrd 10089 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
21 fourierdlem78.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (-π[,]π))
2212, 21sseldd 3604 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2322rexrd 10089 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
2423adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
25 simpr 477 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
26 ioogtlb 39717 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2720, 24, 25, 26syl3anc 1326 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
286, 15, 9, 19, 27lelttrd 10195 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π < 𝑠)
296, 9, 28ltled 10185 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → -π ≤ 𝑠)
3022adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
31 iooltub 39735 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
3220, 24, 25, 31syl3anc 1326 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
335, 4elicc2i 12239 . . . . . . . . . . . 12 (𝐵 ∈ (-π[,]π) ↔ (𝐵 ∈ ℝ ∧ -π ≤ 𝐵𝐵 ≤ π))
3433simp3bi 1078 . . . . . . . . . . 11 (𝐵 ∈ (-π[,]π) → 𝐵 ≤ π)
3521, 34syl 17 . . . . . . . . . 10 (𝜑𝐵 ≤ π)
3635adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ π)
379, 30, 7, 32, 36ltletrd 10197 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < π)
389, 7, 37ltled 10185 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≤ π)
396, 7, 9, 29, 38eliccd 39726 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
4039ex 450 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (-π[,]π)))
4140ssrdv 3609 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
4241resmptd 5452 . . 3 (𝜑 → ((𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))))
433, 42eqtrd 2656 . 2 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))))
44 0red 10041 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
45 fourierdlem78.f . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
4645adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
47 fourierdlem78.x . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ ℝ)
4847adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
4948, 9readdcld 10069 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
5046, 49ffvelrnd 6360 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
51 fourierdlem78.y . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ)
52 fourierdlem78.w . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ ℝ)
5351, 52ifcld 4131 . . . . . . . . . . . . . 14 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5453adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
5550, 54resubcld 10458 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
56 eleq1 2689 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (𝑠 ∈ (𝐴(,)𝐵) ↔ 0 ∈ (𝐴(,)𝐵)))
5756biimpac 503 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
5857adantll 750 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
59 fourierdlem78.nxelab . . . . . . . . . . . . . . 15 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
6059ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
6158, 60pm2.65da 600 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
6261neqned 2801 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
6355, 9, 62redivcld 10853 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) ∈ ℝ)
6444, 63ifcld 4131 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
65 fourierdlem78.h . . . . . . . . . . 11 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6665fvmpt2 6291 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6739, 64, 66syl2anc 693 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6867, 64eqeltrd 2701 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) ∈ ℝ)
69 1red 10055 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
70 2re 11090 . . . . . . . . . . . . . 14 2 ∈ ℝ
7170a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
729rehalfcld 11279 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
7372resincld 14873 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
7471, 73remulcld 10070 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
7571recnd 10068 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
7673recnd 10068 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
77 2ne0 11113 . . . . . . . . . . . . . 14 2 ≠ 0
7877a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
79 fourierdlem44 40368 . . . . . . . . . . . . . 14 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
8039, 62, 79syl2anc 693 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
8175, 76, 78, 80mulne0d 10679 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
829, 74, 81redivcld 10853 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
8369, 82ifcld 4131 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
84 fourierdlem78.k . . . . . . . . . . 11 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8584fvmpt2 6291 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8639, 83, 85syl2anc 693 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8786, 83eqeltrd 2701 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) ∈ ℝ)
8868, 87remulcld 10070 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
89 fourierdlem78.u . . . . . . . 8 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
9089fvmpt2 6291 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
9139, 88, 90syl2anc 693 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
9291, 88eqeltrd 2701 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑈𝑠) ∈ ℝ)
93 fourierdlem78.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
9493adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑁 ∈ ℝ)
9571, 78rereccld 10852 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℝ)
9694, 95readdcld 10069 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑁 + (1 / 2)) ∈ ℝ)
9796, 9remulcld 10070 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑠) ∈ ℝ)
9897resincld 14873 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘((𝑁 + (1 / 2)) · 𝑠)) ∈ ℝ)
99 fourierdlem78.s . . . . . . . 8 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
10099fvmpt2 6291 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑁 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
10139, 98, 100syl2anc 693 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑆𝑠) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
102101, 98eqeltrd 2701 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑆𝑠) ∈ ℝ)
10392, 102remulcld 10070 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
104 eqid 2622 . . . 4 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠)))
105103, 104fmptd 6385 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))):(𝐴(,)𝐵)⟶ℝ)
106 ax-resscn 9993 . . . . 5 ℝ ⊆ ℂ
107106a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
10891mpteq2dva 4744 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑈𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠))))
10961iffalsed 4097 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
11055recnd 10068 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℂ)
1119recnd 10068 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
112110, 111, 62divrecd 10804 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
11367, 109, 1123eqtrd 2660 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠)))
114113mpteq2dva 4744 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))))
11550recnd 10068 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
11654recnd 10068 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
117115, 116negsubd 10398 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)))
118117eqcomd 2628 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊)))
119118mpteq2dva 4744 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))))
12014, 47readdcld 10069 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
121120rexrd 10089 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 + 𝑋) ∈ ℝ*)
122121adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) ∈ ℝ*)
12322, 47readdcld 10069 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
124123rexrd 10089 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 + 𝑋) ∈ ℝ*)
125124adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑋) ∈ ℝ*)
12614recnd 10068 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℂ)
12747recnd 10068 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ ℂ)
128126, 127addcomd 10238 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 + 𝑋) = (𝑋 + 𝐴))
129128adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) = (𝑋 + 𝐴))
13015, 9, 48, 27ltadd2dd 10196 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
131129, 130eqbrtrd 4675 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑋) < (𝑋 + 𝑠))
1329, 30, 48, 32ltadd2dd 10196 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
13322recnd 10068 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℂ)
134127, 133addcomd 10238 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋 + 𝐵) = (𝐵 + 𝑋))
135134adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) = (𝐵 + 𝑋))
136132, 135breqtrd 4679 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝐵 + 𝑋))
137122, 125, 49, 131, 136eliood 39720 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))
138 fvres 6207 . . . . . . . . . . . . . . 15 ((𝑋 + 𝑠) ∈ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
139137, 138syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
140139eqcomd 2628 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠)))
141140mpteq2dva 4744 . . . . . . . . . . . 12 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))))
142 ioosscn 39716 . . . . . . . . . . . . . 14 ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ
143142a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)) ⊆ ℂ)
144 fourierdlem78.fcn . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ))
145 ioosscn 39716 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ℂ
146145a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
147143, 144, 146, 127, 137fourierdlem23 40347 . . . . . . . . . . . 12 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋)))‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
148141, 147eqeltrd 2701 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
149 0red 10041 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
15014ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
1518adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
152 simplr 792 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝐴)
15327adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
154149, 150, 151, 152, 153lelttrd 10195 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 < 𝑠)
155154iftrued 4094 . . . . . . . . . . . . . . 15 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
156155negeqd 10275 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 ≤ 𝐴) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑌)
157156mpteq2dva 4744 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌))
15851renegcld 10457 . . . . . . . . . . . . . . . 16 (𝜑 → -𝑌 ∈ ℝ)
159158recnd 10068 . . . . . . . . . . . . . . 15 (𝜑 → -𝑌 ∈ ℂ)
160 ssid 3624 . . . . . . . . . . . . . . . 16 ℂ ⊆ ℂ
161160a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
162146, 159, 161constcncfg 40084 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
163162adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑌) ∈ ((𝐴(,)𝐵)–cn→ℂ))
164157, 163eqeltrd 2701 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
165 simpl 473 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝜑)
16614rexrd 10089 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
167166ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 ∈ ℝ*)
16823ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ*)
169 0red 10041 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
170 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → ¬ 0 ≤ 𝐴)
17114adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
172 0red 10041 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 0 ∈ ℝ)
173171, 172ltnled 10184 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴))
174170, 173mpbird 247 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐴 < 0)
175174adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 𝐴 < 0)
176 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → ¬ 𝐵 ≤ 0)
177 0red 10041 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 ∈ ℝ)
17822adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 𝐵 ∈ ℝ)
179177, 178ltnled 10184 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
180176, 179mpbird 247 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
181180adantlr 751 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 < 𝐵)
182167, 168, 169, 175, 181eliood 39720 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → 0 ∈ (𝐴(,)𝐵))
18359ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 0 ≤ 𝐴) ∧ ¬ 𝐵 ≤ 0) → ¬ 0 ∈ (𝐴(,)𝐵))
184182, 183condan 835 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → 𝐵 ≤ 0)
1858adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
186 0red 10041 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
18722ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
18832adantlr 751 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
189 simplr 792 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ≤ 0)
190185, 187, 186, 188, 189ltletrd 10197 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 0)
191185, 186, 190ltnsymd 10186 . . . . . . . . . . . . . . . . 17 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ¬ 0 < 𝑠)
192191iffalsed 4097 . . . . . . . . . . . . . . . 16 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
193192negeqd 10275 . . . . . . . . . . . . . . 15 (((𝜑𝐵 ≤ 0) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → -if(0 < 𝑠, 𝑌, 𝑊) = -𝑊)
194193mpteq2dva 4744 . . . . . . . . . . . . . 14 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊))
19552recnd 10068 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ ℂ)
196195negcld 10379 . . . . . . . . . . . . . . . 16 (𝜑 → -𝑊 ∈ ℂ)
197146, 196, 161constcncfg 40084 . . . . . . . . . . . . . . 15 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
198197adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -𝑊) ∈ ((𝐴(,)𝐵)–cn→ℂ))
199194, 198eqeltrd 2701 . . . . . . . . . . . . 13 ((𝜑𝐵 ≤ 0) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
200165, 184, 199syl2anc 693 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐴) → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
201164, 200pm2.61dan 832 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ -if(0 < 𝑠, 𝑌, 𝑊)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
202148, 201addcncf 40086 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) + -if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
203119, 202eqeltrd 2701 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
204 eqid 2622 . . . . . . . . . 10 (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) = (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠))
205 1cnd 10056 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
206204cdivcncf 22720 . . . . . . . . . . 11 (1 ∈ ℂ → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
207205, 206syl 17 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑠)) ∈ ((ℂ ∖ {0})–cn→ℂ))
208 velsn 4193 . . . . . . . . . . . . . 14 (𝑠 ∈ {0} ↔ 𝑠 = 0)
20961, 208sylnibr 319 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 ∈ {0})
210111, 209eldifd 3585 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (ℂ ∖ {0}))
211210ralrimiva 2966 . . . . . . . . . . 11 (𝜑 → ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
212 dfss3 3592 . . . . . . . . . . 11 ((𝐴(,)𝐵) ⊆ (ℂ ∖ {0}) ↔ ∀𝑠 ∈ (𝐴(,)𝐵)𝑠 ∈ (ℂ ∖ {0}))
213211, 212sylibr 224 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (ℂ ∖ {0}))
2149, 62rereccld 10852 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℝ)
215214recnd 10068 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 𝑠) ∈ ℂ)
216204, 207, 213, 161, 215cncfmptssg 40083 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
217203, 216mulcncf 23215 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · (1 / 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
218114, 217eqeltrd 2701 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
21961iffalsed 4097 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
22074recnd 10068 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
221111, 220, 81divrecd 10804 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = (𝑠 · (1 / (2 · (sin‘(𝑠 / 2))))))
22286, 219, 2213eqtrd 2660 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = (𝑠 · (1 / (2 · (sin‘(𝑠 / 2))))))
223222mpteq2dva 4744 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 · (1 / (2 · (sin‘(𝑠 / 2)))))))
224219, 221eqtr2d 2657 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 · (1 / (2 · (sin‘(𝑠 / 2))))) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
225224mpteq2dva 4744 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 · (1 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
226 eqid 2622 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
227 cncfss 22702 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
228106, 160, 227mp2an 708 . . . . . . . . . . 11 ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ)
229226fourierdlem62 40385 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((-π[,]π)–cn→ℝ)
230229a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((-π[,]π)–cn→ℝ))
231228, 230sseldi 3601 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((-π[,]π)–cn→ℂ))
23283recnd 10068 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
233226, 231, 41, 161, 232cncfmptssg 40083 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
234225, 233eqeltrd 2701 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 · (1 / (2 · (sin‘(𝑠 / 2)))))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
235223, 234eqeltrd 2701 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
236218, 235mulcncf 23215 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
237108, 236eqeltrd 2701 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑈𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
238101mpteq2dva 4744 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑆𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
239 sincn 24198 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
240239a1i 11 . . . . . . 7 (𝜑 → sin ∈ (ℂ–cn→ℂ))
241 halfre 11246 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
242241a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
24393, 242readdcld 10069 . . . . . . . . . 10 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
244243recnd 10068 . . . . . . . . 9 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
245146, 244, 161constcncfg 40084 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
246146, 161idcncfg 40085 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) ∈ ((𝐴(,)𝐵)–cn→ℂ))
247245, 246mulcncf 23215 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
248240, 247cncfmpt1f 22716 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
249238, 248eqeltrd 2701 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑆𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
250237, 249mulcncf 23215 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
251 cncffvrn 22701 . . . 4 ((ℝ ⊆ ℂ ∧ (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))):(𝐴(,)𝐵)⟶ℝ))
252107, 250, 251syl2anc 693 . . 3 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))):(𝐴(,)𝐵)⟶ℝ))
253105, 252mpbird 247 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑈𝑠) · (𝑆𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℝ))
25443, 253eqeltrd 2701 1 (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  cdif 3571  wss 3574  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  2c2 11070  (,)cioo 12175  [,]cicc 12178  sincsin 14794  πcpi 14797  cnccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem88  40411
  Copyright terms: Public domain W3C validator