Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circum Structured version   Visualization version   Unicode version

Theorem circum 31568
Description: The circumference of a circle of radius  R, defined as the limit as  n  ~~> +oo of the perimeter of an inscribed n-sided isogons, is  ( (
2  x.  pi )  x.  R ). (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.)
Hypotheses
Ref Expression
circum.1  |-  A  =  ( ( 2  x.  pi )  /  n
)
circum.2  |-  P  =  ( n  e.  NN  |->  ( ( 2  x.  n )  x.  ( R  x.  ( sin `  ( A  /  2
) ) ) ) )
circum.3  |-  R  e.  RR
Assertion
Ref Expression
circum  |-  P  ~~>  ( ( 2  x.  pi )  x.  R )
Distinct variable group:    R, n
Allowed substitution hints:    A( n)    P( n)

Proof of Theorem circum
Dummy variables  y 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 11408 . . . 4  |-  ( T. 
->  1  e.  ZZ )
3 pirp 24213 . . . . . . . . . 10  |-  pi  e.  RR+
4 nnrp 11842 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n  e.  RR+ )
5 rpdivcl 11856 . . . . . . . . . 10  |-  ( ( pi  e.  RR+  /\  n  e.  RR+ )  ->  (
pi  /  n )  e.  RR+ )
63, 4, 5sylancr 695 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
pi  /  n )  e.  RR+ )
76rprene0d 11880 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( pi  /  n
)  e.  RR  /\  ( pi  /  n
)  =/=  0 ) )
8 eldifsn 4317 . . . . . . . 8  |-  ( ( pi  /  n )  e.  ( RR  \  { 0 } )  <-> 
( ( pi  /  n )  e.  RR  /\  ( pi  /  n
)  =/=  0 ) )
97, 8sylibr 224 . . . . . . 7  |-  ( n  e.  NN  ->  (
pi  /  n )  e.  ( RR  \  {
0 } ) )
109adantl 482 . . . . . 6  |-  ( ( T.  /\  n  e.  NN )  ->  (
pi  /  n )  e.  ( RR  \  {
0 } ) )
11 eqidd 2623 . . . . . 6  |-  ( T. 
->  ( n  e.  NN  |->  ( pi  /  n
) )  =  ( n  e.  NN  |->  ( pi  /  n ) ) )
12 eqidd 2623 . . . . . 6  |-  ( T. 
->  ( y  e.  ( RR  \  { 0 } )  |->  ( ( sin `  y )  /  y ) )  =  ( y  e.  ( RR  \  {
0 } )  |->  ( ( sin `  y
)  /  y ) ) )
13 fveq2 6191 . . . . . . 7  |-  ( y  =  ( pi  /  n )  ->  ( sin `  y )  =  ( sin `  (
pi  /  n )
) )
14 id 22 . . . . . . 7  |-  ( y  =  ( pi  /  n )  ->  y  =  ( pi  /  n ) )
1513, 14oveq12d 6668 . . . . . 6  |-  ( y  =  ( pi  /  n )  ->  (
( sin `  y
)  /  y )  =  ( ( sin `  ( pi  /  n
) )  /  (
pi  /  n )
) )
1610, 11, 12, 15fmptco 6396 . . . . 5  |-  ( T. 
->  ( ( y  e.  ( RR  \  {
0 } )  |->  ( ( sin `  y
)  /  y ) )  o.  ( n  e.  NN  |->  ( pi 
/  n ) ) )  =  ( n  e.  NN  |->  ( ( sin `  ( pi 
/  n ) )  /  ( pi  /  n ) ) ) )
17 eqid 2622 . . . . . . 7  |-  ( n  e.  NN  |->  ( pi 
/  n ) )  =  ( n  e.  NN  |->  ( pi  /  n ) )
1817, 9fmpti 6383 . . . . . 6  |-  ( n  e.  NN  |->  ( pi 
/  n ) ) : NN --> ( RR 
\  { 0 } )
19 pire 24210 . . . . . . . 8  |-  pi  e.  RR
2019recni 10052 . . . . . . 7  |-  pi  e.  CC
21 divcnv 14585 . . . . . . 7  |-  ( pi  e.  CC  ->  (
n  e.  NN  |->  ( pi  /  n ) )  ~~>  0 )
2220, 21mp1i 13 . . . . . 6  |-  ( T. 
->  ( n  e.  NN  |->  ( pi  /  n
) )  ~~>  0 )
23 sinccvg 31567 . . . . . 6  |-  ( ( ( n  e.  NN  |->  ( pi  /  n
) ) : NN --> ( RR  \  { 0 } )  /\  (
n  e.  NN  |->  ( pi  /  n ) )  ~~>  0 )  -> 
( ( y  e.  ( RR  \  {
0 } )  |->  ( ( sin `  y
)  /  y ) )  o.  ( n  e.  NN  |->  ( pi 
/  n ) ) )  ~~>  1 )
2418, 22, 23sylancr 695 . . . . 5  |-  ( T. 
->  ( ( y  e.  ( RR  \  {
0 } )  |->  ( ( sin `  y
)  /  y ) )  o.  ( n  e.  NN  |->  ( pi 
/  n ) ) )  ~~>  1 )
2516, 24eqbrtrrd 4677 . . . 4  |-  ( T. 
->  ( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) )  ~~>  1 )
26 2re 11090 . . . . . . . 8  |-  2  e.  RR
2726, 19remulcli 10054 . . . . . . 7  |-  ( 2  x.  pi )  e.  RR
28 circum.3 . . . . . . 7  |-  R  e.  RR
2927, 28remulcli 10054 . . . . . 6  |-  ( ( 2  x.  pi )  x.  R )  e.  RR
3029recni 10052 . . . . 5  |-  ( ( 2  x.  pi )  x.  R )  e.  CC
3130a1i 11 . . . 4  |-  ( T. 
->  ( ( 2  x.  pi )  x.  R
)  e.  CC )
32 circum.2 . . . . . 6  |-  P  =  ( n  e.  NN  |->  ( ( 2  x.  n )  x.  ( R  x.  ( sin `  ( A  /  2
) ) ) ) )
33 nnex 11026 . . . . . . 7  |-  NN  e.  _V
3433mptex 6486 . . . . . 6  |-  ( n  e.  NN  |->  ( ( 2  x.  n )  x.  ( R  x.  ( sin `  ( A  /  2 ) ) ) ) )  e. 
_V
3532, 34eqeltri 2697 . . . . 5  |-  P  e. 
_V
3635a1i 11 . . . 4  |-  ( T. 
->  P  e.  _V )
37 eqid 2622 . . . . . . . . . 10  |-  ( y  e.  ( RR  \  { 0 } ) 
|->  ( ( sin `  y
)  /  y ) )  =  ( y  e.  ( RR  \  { 0 } ) 
|->  ( ( sin `  y
)  /  y ) )
38 eldifi 3732 . . . . . . . . . . . 12  |-  ( y  e.  ( RR  \  { 0 } )  ->  y  e.  RR )
3938resincld 14873 . . . . . . . . . . 11  |-  ( y  e.  ( RR  \  { 0 } )  ->  ( sin `  y
)  e.  RR )
40 eldifsni 4320 . . . . . . . . . . 11  |-  ( y  e.  ( RR  \  { 0 } )  ->  y  =/=  0
)
4139, 38, 40redivcld 10853 . . . . . . . . . 10  |-  ( y  e.  ( RR  \  { 0 } )  ->  ( ( sin `  y )  /  y
)  e.  RR )
4237, 41fmpti 6383 . . . . . . . . 9  |-  ( y  e.  ( RR  \  { 0 } ) 
|->  ( ( sin `  y
)  /  y ) ) : ( RR 
\  { 0 } ) --> RR
43 fco 6058 . . . . . . . . 9  |-  ( ( ( y  e.  ( RR  \  { 0 } )  |->  ( ( sin `  y )  /  y ) ) : ( RR  \  { 0 } ) --> RR  /\  ( n  e.  NN  |->  ( pi 
/  n ) ) : NN --> ( RR 
\  { 0 } ) )  ->  (
( y  e.  ( RR  \  { 0 } )  |->  ( ( sin `  y )  /  y ) )  o.  ( n  e.  NN  |->  ( pi  /  n ) ) ) : NN --> RR )
4442, 18, 43mp2an 708 . . . . . . . 8  |-  ( ( y  e.  ( RR 
\  { 0 } )  |->  ( ( sin `  y )  /  y
) )  o.  (
n  e.  NN  |->  ( pi  /  n ) ) ) : NN --> RR
4516trud 1493 . . . . . . . . 9  |-  ( ( y  e.  ( RR 
\  { 0 } )  |->  ( ( sin `  y )  /  y
) )  o.  (
n  e.  NN  |->  ( pi  /  n ) ) )  =  ( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) )
4645feq1i 6036 . . . . . . . 8  |-  ( ( ( y  e.  ( RR  \  { 0 } )  |->  ( ( sin `  y )  /  y ) )  o.  ( n  e.  NN  |->  ( pi  /  n ) ) ) : NN --> RR  <->  ( n  e.  NN  |->  ( ( sin `  ( pi  /  n
) )  /  (
pi  /  n )
) ) : NN --> RR )
4744, 46mpbi 220 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( sin `  ( pi 
/  n ) )  /  ( pi  /  n ) ) ) : NN --> RR
4847ffvelrni 6358 . . . . . 6  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) ) `  k )  e.  RR )
4948adantl 482 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) ) `  k )  e.  RR )
5049recnd 10068 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) ) `  k )  e.  CC )
5126recni 10052 . . . . . . . . . . . . . . 15  |-  2  e.  CC
5251a1i 11 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  k  e.  NN )  ->  2  e.  CC )
5320a1i 11 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  k  e.  NN )  ->  pi  e.  CC )
54 nncn 11028 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  k  e.  CC )
5554adantl 482 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  CC )
56 nnne0 11053 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  k  =/=  0 )
5756adantl 482 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  k  e.  NN )  ->  k  =/=  0 )
5852, 53, 55, 57divassd 10836 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e.  NN )  ->  (
( 2  x.  pi )  /  k )  =  ( 2  x.  (
pi  /  k )
) )
5958oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e.  NN )  ->  (
( ( 2  x.  pi )  /  k
)  /  2 )  =  ( ( 2  x.  ( pi  / 
k ) )  / 
2 ) )
60 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  NN )
61 nndivre 11056 . . . . . . . . . . . . . . 15  |-  ( ( pi  e.  RR  /\  k  e.  NN )  ->  ( pi  /  k
)  e.  RR )
6219, 60, 61sylancr 695 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  k  e.  NN )  ->  (
pi  /  k )  e.  RR )
6362recnd 10068 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e.  NN )  ->  (
pi  /  k )  e.  CC )
64 2ne0 11113 . . . . . . . . . . . . . 14  |-  2  =/=  0
6564a1i 11 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e.  NN )  ->  2  =/=  0 )
6663, 52, 65divcan3d 10806 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e.  NN )  ->  (
( 2  x.  (
pi  /  k )
)  /  2 )  =  ( pi  / 
k ) )
6759, 66eqtrd 2656 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e.  NN )  ->  (
( ( 2  x.  pi )  /  k
)  /  2 )  =  ( pi  / 
k ) )
6867fveq2d 6195 . . . . . . . . . 10  |-  ( ( T.  /\  k  e.  NN )  ->  ( sin `  ( ( ( 2  x.  pi )  /  k )  / 
2 ) )  =  ( sin `  (
pi  /  k )
) )
6962resincld 14873 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e.  NN )  ->  ( sin `  ( pi  / 
k ) )  e.  RR )
7069recnd 10068 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e.  NN )  ->  ( sin `  ( pi  / 
k ) )  e.  CC )
71 nnrp 11842 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  k  e.  RR+ )
7271adantl 482 . . . . . . . . . . . . 13  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  RR+ )
73 rpdivcl 11856 . . . . . . . . . . . . 13  |-  ( ( pi  e.  RR+  /\  k  e.  RR+ )  ->  (
pi  /  k )  e.  RR+ )
743, 72, 73sylancr 695 . . . . . . . . . . . 12  |-  ( ( T.  /\  k  e.  NN )  ->  (
pi  /  k )  e.  RR+ )
7574rpne0d 11877 . . . . . . . . . . 11  |-  ( ( T.  /\  k  e.  NN )  ->  (
pi  /  k )  =/=  0 )
7670, 63, 75divcan2d 10803 . . . . . . . . . 10  |-  ( ( T.  /\  k  e.  NN )  ->  (
( pi  /  k
)  x.  ( ( sin `  ( pi 
/  k ) )  /  ( pi  / 
k ) ) )  =  ( sin `  (
pi  /  k )
) )
7768, 76eqtr4d 2659 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  ( sin `  ( ( ( 2  x.  pi )  /  k )  / 
2 ) )  =  ( ( pi  / 
k )  x.  (
( sin `  (
pi  /  k )
)  /  ( pi 
/  k ) ) ) )
7877oveq2d 6666 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  ( R  x.  ( sin `  ( ( ( 2  x.  pi )  / 
k )  /  2
) ) )  =  ( R  x.  (
( pi  /  k
)  x.  ( ( sin `  ( pi 
/  k ) )  /  ( pi  / 
k ) ) ) ) )
7928recni 10052 . . . . . . . . . 10  |-  R  e.  CC
8079a1i 11 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  R  e.  CC )
81 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
pi  /  n )  =  ( pi  / 
k ) )
8281fveq2d 6195 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( sin `  ( pi  /  n ) )  =  ( sin `  (
pi  /  k )
) )
8382, 81oveq12d 6668 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) )  =  ( ( sin `  ( pi  /  k
) )  /  (
pi  /  k )
) )
84 eqid 2622 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  ( ( sin `  ( pi 
/  n ) )  /  ( pi  /  n ) ) )  =  ( n  e.  NN  |->  ( ( sin `  ( pi  /  n
) )  /  (
pi  /  n )
) )
85 ovex 6678 . . . . . . . . . . . 12  |-  ( ( sin `  ( pi 
/  k ) )  /  ( pi  / 
k ) )  e. 
_V
8683, 84, 85fvmpt 6282 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) ) `  k )  =  ( ( sin `  ( pi  /  k
) )  /  (
pi  /  k )
) )
8786adantl 482 . . . . . . . . . 10  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) ) `  k )  =  ( ( sin `  ( pi  /  k
) )  /  (
pi  /  k )
) )
8887, 50eqeltrrd 2702 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  (
( sin `  (
pi  /  k )
)  /  ( pi 
/  k ) )  e.  CC )
8980, 63, 88mulassd 10063 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
( R  x.  (
pi  /  k )
)  x.  ( ( sin `  ( pi 
/  k ) )  /  ( pi  / 
k ) ) )  =  ( R  x.  ( ( pi  / 
k )  x.  (
( sin `  (
pi  /  k )
)  /  ( pi 
/  k ) ) ) ) )
9078, 89eqtr4d 2659 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( R  x.  ( sin `  ( ( ( 2  x.  pi )  / 
k )  /  2
) ) )  =  ( ( R  x.  ( pi  /  k
) )  x.  (
( sin `  (
pi  /  k )
)  /  ( pi 
/  k ) ) ) )
9190oveq2d 6666 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  (
( 2  x.  k
)  x.  ( R  x.  ( sin `  (
( ( 2  x.  pi )  /  k
)  /  2 ) ) ) )  =  ( ( 2  x.  k )  x.  (
( R  x.  (
pi  /  k )
)  x.  ( ( sin `  ( pi 
/  k ) )  /  ( pi  / 
k ) ) ) ) )
92 mulcl 10020 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  k
)  e.  CC )
9351, 55, 92sylancr 695 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
2  x.  k )  e.  CC )
94 mulcl 10020 . . . . . . . 8  |-  ( ( R  e.  CC  /\  ( pi  /  k
)  e.  CC )  ->  ( R  x.  ( pi  /  k
) )  e.  CC )
9579, 63, 94sylancr 695 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  ( R  x.  ( pi  /  k ) )  e.  CC )
9693, 95, 88mulassd 10063 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  (
( ( 2  x.  k )  x.  ( R  x.  ( pi  /  k ) ) )  x.  ( ( sin `  ( pi  /  k
) )  /  (
pi  /  k )
) )  =  ( ( 2  x.  k
)  x.  ( ( R  x.  ( pi 
/  k ) )  x.  ( ( sin `  ( pi  /  k
) )  /  (
pi  /  k )
) ) ) )
9752, 55, 80, 63mul4d 10248 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
( 2  x.  k
)  x.  ( R  x.  ( pi  / 
k ) ) )  =  ( ( 2  x.  R )  x.  ( k  x.  (
pi  /  k )
) ) )
9853, 55, 57divcan2d 10803 . . . . . . . . . 10  |-  ( ( T.  /\  k  e.  NN )  ->  (
k  x.  ( pi 
/  k ) )  =  pi )
9998oveq2d 6666 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  (
( 2  x.  R
)  x.  ( k  x.  ( pi  / 
k ) ) )  =  ( ( 2  x.  R )  x.  pi ) )
10052, 80, 53mul32d 10246 . . . . . . . . 9  |-  ( ( T.  /\  k  e.  NN )  ->  (
( 2  x.  R
)  x.  pi )  =  ( ( 2  x.  pi )  x.  R ) )
10199, 100eqtrd 2656 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
( 2  x.  R
)  x.  ( k  x.  ( pi  / 
k ) ) )  =  ( ( 2  x.  pi )  x.  R ) )
10297, 101eqtrd 2656 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
( 2  x.  k
)  x.  ( R  x.  ( pi  / 
k ) ) )  =  ( ( 2  x.  pi )  x.  R ) )
103102oveq1d 6665 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  (
( ( 2  x.  k )  x.  ( R  x.  ( pi  /  k ) ) )  x.  ( ( sin `  ( pi  /  k
) )  /  (
pi  /  k )
) )  =  ( ( ( 2  x.  pi )  x.  R
)  x.  ( ( sin `  ( pi 
/  k ) )  /  ( pi  / 
k ) ) ) )
10491, 96, 1033eqtr2d 2662 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
( 2  x.  k
)  x.  ( R  x.  ( sin `  (
( ( 2  x.  pi )  /  k
)  /  2 ) ) ) )  =  ( ( ( 2  x.  pi )  x.  R )  x.  (
( sin `  (
pi  /  k )
)  /  ( pi 
/  k ) ) ) )
105 oveq2 6658 . . . . . . . 8  |-  ( n  =  k  ->  (
2  x.  n )  =  ( 2  x.  k ) )
106 circum.1 . . . . . . . . . . . 12  |-  A  =  ( ( 2  x.  pi )  /  n
)
107 oveq2 6658 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( 2  x.  pi )  /  n )  =  ( ( 2  x.  pi )  /  k
) )
108106, 107syl5eq 2668 . . . . . . . . . . 11  |-  ( n  =  k  ->  A  =  ( ( 2  x.  pi )  / 
k ) )
109108oveq1d 6665 . . . . . . . . . 10  |-  ( n  =  k  ->  ( A  /  2 )  =  ( ( ( 2  x.  pi )  / 
k )  /  2
) )
110109fveq2d 6195 . . . . . . . . 9  |-  ( n  =  k  ->  ( sin `  ( A  / 
2 ) )  =  ( sin `  (
( ( 2  x.  pi )  /  k
)  /  2 ) ) )
111110oveq2d 6666 . . . . . . . 8  |-  ( n  =  k  ->  ( R  x.  ( sin `  ( A  /  2
) ) )  =  ( R  x.  ( sin `  ( ( ( 2  x.  pi )  /  k )  / 
2 ) ) ) )
112105, 111oveq12d 6668 . . . . . . 7  |-  ( n  =  k  ->  (
( 2  x.  n
)  x.  ( R  x.  ( sin `  ( A  /  2 ) ) ) )  =  ( ( 2  x.  k
)  x.  ( R  x.  ( sin `  (
( ( 2  x.  pi )  /  k
)  /  2 ) ) ) ) )
113 ovex 6678 . . . . . . 7  |-  ( ( 2  x.  k )  x.  ( R  x.  ( sin `  ( ( ( 2  x.  pi )  /  k )  / 
2 ) ) ) )  e.  _V
114112, 32, 113fvmpt 6282 . . . . . 6  |-  ( k  e.  NN  ->  ( P `  k )  =  ( ( 2  x.  k )  x.  ( R  x.  ( sin `  ( ( ( 2  x.  pi )  /  k )  / 
2 ) ) ) ) )
115114adantl 482 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  ( P `  k )  =  ( ( 2  x.  k )  x.  ( R  x.  ( sin `  ( ( ( 2  x.  pi )  /  k )  / 
2 ) ) ) ) )
11687oveq2d 6666 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
( ( 2  x.  pi )  x.  R
)  x.  ( ( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) ) `  k ) )  =  ( ( ( 2  x.  pi )  x.  R )  x.  ( ( sin `  (
pi  /  k )
)  /  ( pi 
/  k ) ) ) )
117104, 115, 1163eqtr4d 2666 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  ( P `  k )  =  ( ( ( 2  x.  pi )  x.  R )  x.  ( ( n  e.  NN  |->  ( ( sin `  ( pi  /  n
) )  /  (
pi  /  n )
) ) `  k
) ) )
1181, 2, 25, 31, 36, 50, 117climmulc2 14367 . . 3  |-  ( T. 
->  P  ~~>  ( (
( 2  x.  pi )  x.  R )  x.  1 ) )
119118trud 1493 . 2  |-  P  ~~>  ( ( ( 2  x.  pi )  x.  R )  x.  1 )
12030mulid1i 10042 . 2  |-  ( ( ( 2  x.  pi )  x.  R )  x.  1 )  =  ( ( 2  x.  pi )  x.  R )
121119, 120breqtri 4678 1  |-  P  ~~>  ( ( 2  x.  pi )  x.  R )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571   {csn 4177   class class class wbr 4653    |-> cmpt 4729    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    / cdiv 10684   NNcn 11020   2c2 11070   RR+crp 11832    ~~> cli 14215   sincsin 14794   picpi 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator