MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxploglim Structured version   Visualization version   Unicode version

Theorem cxploglim 24704
Description: The logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
cxploglim  |-  ( A  e.  RR+  ->  ( n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^c  A ) ) )  ~~> r  0 )
Distinct variable group:    A, n

Proof of Theorem cxploglim
Dummy variables  m  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpre 11839 . . . 4  |-  ( A  e.  RR+  ->  A  e.  RR )
2 reefcl 14817 . . . 4  |-  ( A  e.  RR  ->  ( exp `  A )  e.  RR )
31, 2syl 17 . . 3  |-  ( A  e.  RR+  ->  ( exp `  A )  e.  RR )
4 efgt1 14846 . . 3  |-  ( A  e.  RR+  ->  1  < 
( exp `  A
) )
5 cxp2limlem 24702 . . 3  |-  ( ( ( exp `  A
)  e.  RR  /\  1  <  ( exp `  A
) )  ->  (
m  e.  RR+  |->  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  ~~> r  0 )
63, 4, 5syl2anc 693 . 2  |-  ( A  e.  RR+  ->  ( m  e.  RR+  |->  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  ~~> r  0 )
7 reefcl 14817 . . . . . . . 8  |-  ( z  e.  RR  ->  ( exp `  z )  e.  RR )
87adantl 482 . . . . . . 7  |-  ( ( A  e.  RR+  /\  z  e.  RR )  ->  ( exp `  z )  e.  RR )
9 1re 10039 . . . . . . 7  |-  1  e.  RR
10 ifcl 4130 . . . . . . 7  |-  ( ( ( exp `  z
)  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_ 
( exp `  z
) ,  ( exp `  z ) ,  1 )  e.  RR )
118, 9, 10sylancl 694 . . . . . 6  |-  ( ( A  e.  RR+  /\  z  e.  RR )  ->  if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  e.  RR )
129a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  1  e.  RR )
138adantr 481 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( exp `  z
)  e.  RR )
14 rpre 11839 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  e.  RR )
1514adantl 482 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  n  e.  RR )
16 maxlt 12024 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( exp `  z )  e.  RR  /\  n  e.  RR )  ->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  <->  ( 1  <  n  /\  ( exp `  z )  < 
n ) ) )
1712, 13, 15, 16syl3anc 1326 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z ) ,  1 )  < 
n  <->  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )
18 simprrr 805 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  z
)  <  n )
19 reeflog 24327 . . . . . . . . . . . . . . 15  |-  ( n  e.  RR+  ->  ( exp `  ( log `  n
) )  =  n )
2019ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  ( log `  n ) )  =  n )
2118, 20breqtrrd 4681 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  z
)  <  ( exp `  ( log `  n
) ) )
22 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
z  e.  RR )
2314ad2antrl 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  n  e.  RR )
24 simprrl 804 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
1  <  n )
2523, 24rplogcld 24375 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( log `  n
)  e.  RR+ )
2625rpred 11872 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( log `  n
)  e.  RR )
27 eflt 14847 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR  /\  ( log `  n )  e.  RR )  -> 
( z  <  ( log `  n )  <->  ( exp `  z )  <  ( exp `  ( log `  n
) ) ) )
2822, 26, 27syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( z  <  ( log `  n )  <->  ( exp `  z )  <  ( exp `  ( log `  n
) ) ) )
2921, 28mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
z  <  ( log `  n ) )
30 breq2 4657 . . . . . . . . . . . . . . 15  |-  ( m  =  ( log `  n
)  ->  ( z  <  m  <->  z  <  ( log `  n ) ) )
31 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  ( log `  n
)  ->  m  =  ( log `  n ) )
32 oveq2 6658 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  ( log `  n
)  ->  ( ( exp `  A )  ^c  m )  =  ( ( exp `  A
)  ^c  ( log `  n ) ) )
3331, 32oveq12d 6668 . . . . . . . . . . . . . . . . 17  |-  ( m  =  ( log `  n
)  ->  ( m  /  ( ( exp `  A )  ^c 
m ) )  =  ( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )
3433fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( log `  n
)  ->  ( abs `  ( m  /  (
( exp `  A
)  ^c  m ) ) )  =  ( abs `  (
( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) ) )
3534breq1d 4663 . . . . . . . . . . . . . . 15  |-  ( m  =  ( log `  n
)  ->  ( ( abs `  ( m  / 
( ( exp `  A
)  ^c  m ) ) )  < 
x  <->  ( abs `  (
( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x ) )
3630, 35imbi12d 334 . . . . . . . . . . . . . 14  |-  ( m  =  ( log `  n
)  ->  ( (
z  <  m  ->  ( abs `  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  <  x )  <->  ( z  <  ( log `  n
)  ->  ( abs `  ( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x ) ) )
3736rspcv 3305 . . . . . . . . . . . . 13  |-  ( ( log `  n )  e.  RR+  ->  ( A. m  e.  RR+  ( z  <  m  ->  ( abs `  ( m  / 
( ( exp `  A
)  ^c  m ) ) )  < 
x )  ->  (
z  <  ( log `  n )  ->  ( abs `  ( ( log `  n )  /  (
( exp `  A
)  ^c  ( log `  n ) ) ) )  < 
x ) ) )
3825, 37syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
)  ->  ( z  <  ( log `  n
)  ->  ( abs `  ( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x ) ) )
3929, 38mpid 44 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
)  ->  ( abs `  ( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x ) )
401ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  A  e.  RR )
4140relogefd 24374 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( log `  ( exp `  A ) )  =  A )
4241oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( log `  n
)  x.  ( log `  ( exp `  A
) ) )  =  ( ( log `  n
)  x.  A ) )
4325rpcnd 11874 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( log `  n
)  e.  CC )
44 rpcn 11841 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  RR+  ->  A  e.  CC )
4544ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  A  e.  CC )
4643, 45mulcomd 10061 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( log `  n
)  x.  A )  =  ( A  x.  ( log `  n ) ) )
4742, 46eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( log `  n
)  x.  ( log `  ( exp `  A
) ) )  =  ( A  x.  ( log `  n ) ) )
4847fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  (
( log `  n
)  x.  ( log `  ( exp `  A
) ) ) )  =  ( exp `  ( A  x.  ( log `  n ) ) ) )
493ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  A
)  e.  RR )
5049recnd 10068 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  A
)  e.  CC )
51 efne0 14827 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  ( exp `  A )  =/=  0 )
5245, 51syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  A
)  =/=  0 )
5350, 52, 43cxpefd 24458 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( exp `  A
)  ^c  ( log `  n ) )  =  ( exp `  ( ( log `  n
)  x.  ( log `  ( exp `  A
) ) ) ) )
54 rpcn 11841 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  RR+  ->  n  e.  CC )
5554ad2antrl 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  n  e.  CC )
56 rpne0 11848 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  RR+  ->  n  =/=  0 )
5756ad2antrl 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  n  =/=  0 )
5855, 57, 45cxpefd 24458 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( n  ^c  A )  =  ( exp `  ( A  x.  ( log `  n
) ) ) )
5948, 53, 583eqtr4d 2666 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( exp `  A
)  ^c  ( log `  n ) )  =  ( n  ^c  A ) )
6059oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) )  =  ( ( log `  n )  /  (
n  ^c  A ) ) )
6160fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( abs `  (
( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  =  ( abs `  ( ( log `  n
)  /  ( n  ^c  A ) ) ) )
6261breq1d 4663 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( abs `  (
( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x  <->  ( abs `  ( ( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) )
6339, 62sylibd 229 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
)  ->  ( abs `  ( ( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) )
6463expr 643 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( ( 1  <  n  /\  ( exp `  z )  < 
n )  ->  ( A. m  e.  RR+  (
z  <  m  ->  ( abs `  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  <  x )  -> 
( abs `  (
( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
6517, 64sylbid 230 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z ) ,  1 )  < 
n  ->  ( A. m  e.  RR+  ( z  <  m  ->  ( abs `  ( m  / 
( ( exp `  A
)  ^c  m ) ) )  < 
x )  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) ) )
6665com23 86 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( A. m  e.  RR+  ( z  < 
m  ->  ( abs `  ( m  /  (
( exp `  A
)  ^c  m ) ) )  < 
x )  ->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) ) )
6766ralrimdva 2969 . . . . . 6  |-  ( ( A  e.  RR+  /\  z  e.  RR )  ->  ( A. m  e.  RR+  (
z  <  m  ->  ( abs `  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  <  x )  ->  A. n  e.  RR+  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) ) )
68 breq1 4656 . . . . . . . . 9  |-  ( y  =  if ( 1  <_  ( exp `  z
) ,  ( exp `  z ) ,  1 )  ->  ( y  <  n  <->  if ( 1  <_ 
( exp `  z
) ,  ( exp `  z ) ,  1 )  <  n ) )
6968imbi1d 331 . . . . . . . 8  |-  ( y  =  if ( 1  <_  ( exp `  z
) ,  ( exp `  z ) ,  1 )  ->  ( (
y  <  n  ->  ( abs `  ( ( log `  n )  /  ( n  ^c  A ) ) )  <  x )  <->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) ) )
7069ralbidv 2986 . . . . . . 7  |-  ( y  =  if ( 1  <_  ( exp `  z
) ,  ( exp `  z ) ,  1 )  ->  ( A. n  e.  RR+  ( y  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x )  <->  A. n  e.  RR+  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z ) ,  1 )  < 
n  ->  ( abs `  ( ( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
7170rspcev 3309 . . . . . 6  |-  ( ( if ( 1  <_ 
( exp `  z
) ,  ( exp `  z ) ,  1 )  e.  RR  /\  A. n  e.  RR+  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) )  ->  E. y  e.  RR  A. n  e.  RR+  (
y  <  n  ->  ( abs `  ( ( log `  n )  /  ( n  ^c  A ) ) )  <  x ) )
7211, 67, 71syl6an 568 . . . . 5  |-  ( ( A  e.  RR+  /\  z  e.  RR )  ->  ( A. m  e.  RR+  (
z  <  m  ->  ( abs `  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  <  x )  ->  E. y  e.  RR  A. n  e.  RR+  (
y  <  n  ->  ( abs `  ( ( log `  n )  /  ( n  ^c  A ) ) )  <  x ) ) )
7372rexlimdva 3031 . . . 4  |-  ( A  e.  RR+  ->  ( E. z  e.  RR  A. m  e.  RR+  ( z  <  m  ->  ( abs `  ( m  / 
( ( exp `  A
)  ^c  m ) ) )  < 
x )  ->  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  (
( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
7473ralimdv 2963 . . 3  |-  ( A  e.  RR+  ->  ( A. x  e.  RR+  E. z  e.  RR  A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
)  ->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  (
( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
75 simpr 477 . . . . . . 7  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  m  e.  RR+ )
761adantr 481 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  A  e.  RR )
7776rpefcld 14835 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  ( exp `  A )  e.  RR+ )
78 rpre 11839 . . . . . . . . 9  |-  ( m  e.  RR+  ->  m  e.  RR )
7978adantl 482 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  m  e.  RR )
8077, 79rpcxpcld 24476 . . . . . . 7  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  (
( exp `  A
)  ^c  m )  e.  RR+ )
8175, 80rpdivcld 11889 . . . . . 6  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  (
m  /  ( ( exp `  A )  ^c  m ) )  e.  RR+ )
8281rpcnd 11874 . . . . 5  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  (
m  /  ( ( exp `  A )  ^c  m ) )  e.  CC )
8382ralrimiva 2966 . . . 4  |-  ( A  e.  RR+  ->  A. m  e.  RR+  ( m  / 
( ( exp `  A
)  ^c  m ) )  e.  CC )
84 rpssre 11843 . . . . 5  |-  RR+  C_  RR
8584a1i 11 . . . 4  |-  ( A  e.  RR+  ->  RR+  C_  RR )
8683, 85rlim0lt 14240 . . 3  |-  ( A  e.  RR+  ->  ( ( m  e.  RR+  |->  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  ~~> r  0  <->  A. x  e.  RR+  E. z  e.  RR  A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
) ) )
87 relogcl 24322 . . . . . . . 8  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
8887adantl 482 . . . . . . 7  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  ( log `  n )  e.  RR )
89 simpr 477 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  n  e.  RR+ )
901adantr 481 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  A  e.  RR )
9189, 90rpcxpcld 24476 . . . . . . 7  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  (
n  ^c  A )  e.  RR+ )
9288, 91rerpdivcld 11903 . . . . . 6  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  (
( log `  n
)  /  ( n  ^c  A ) )  e.  RR )
9392recnd 10068 . . . . 5  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  (
( log `  n
)  /  ( n  ^c  A ) )  e.  CC )
9493ralrimiva 2966 . . . 4  |-  ( A  e.  RR+  ->  A. n  e.  RR+  ( ( log `  n )  /  (
n  ^c  A ) )  e.  CC )
9594, 85rlim0lt 14240 . . 3  |-  ( A  e.  RR+  ->  ( ( n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^c  A ) ) )  ~~> r  0  <->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  (
( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
9674, 86, 953imtr4d 283 . 2  |-  ( A  e.  RR+  ->  ( ( m  e.  RR+  |->  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  ~~> r  0  ->  (
n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^c  A ) ) )  ~~> r  0 ) )
976, 96mpd 15 1  |-  ( A  e.  RR+  ->  ( n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^c  A ) ) )  ~~> r  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   RR+crp 11832   abscabs 13974    ~~> r crli 14216   expce 14792   logclog 24301    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  cxploglim2  24705  logfacrlim  24949  chtppilimlem2  25163  chpchtlim  25168  dchrvmasumlema  25189  logdivsum  25222
  Copyright terms: Public domain W3C validator