| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem100 | Structured version Visualization version Unicode version | ||
| Description: A piecewise continuous function is integrable on any closed interval. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierlemiblglemlem.p |
|
| fourierdlem100.t |
|
| fourierdlem100.m |
|
| fourierdlem100.q |
|
| fourierdlem100.f |
|
| fourierdlem100.per |
|
| fourierdlem100.fcn |
|
| fourierdlem100.r |
|
| fourierdlem100.l |
|
| fourierdlem100.c |
|
| fourierdlem100.d |
|
| fourierdlem100.o |
|
| fourierdlem100.n |
|
| fourierdlem100.h |
|
| fourierdlem100.s |
|
| fourierdlem100.e |
|
| fourierdlem100.j |
|
| fourierdlem100.i |
|
| Ref | Expression |
|---|---|
| fourierdlem100 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem100.f |
. . 3
| |
| 2 | fourierdlem100.c |
. . . 4
| |
| 3 | fourierdlem100.d |
. . . . 5
| |
| 4 | elioore 12205 |
. . . . 5
| |
| 5 | 3, 4 | syl 17 |
. . . 4
|
| 6 | 2, 5 | iccssred 39727 |
. . 3
|
| 7 | 1, 6 | feqresmpt 6250 |
. 2
|
| 8 | fourierdlem100.o |
. . . 4
| |
| 9 | fveq2 6191 |
. . . . . . . . . 10
| |
| 10 | oveq1 6657 |
. . . . . . . . . . 11
| |
| 11 | 10 | fveq2d 6195 |
. . . . . . . . . 10
|
| 12 | 9, 11 | breq12d 4666 |
. . . . . . . . 9
|
| 13 | 12 | cbvralv 3171 |
. . . . . . . 8
|
| 14 | 13 | anbi2i 730 |
. . . . . . 7
|
| 15 | 14 | a1i 11 |
. . . . . 6
|
| 16 | 15 | rabbiia 3185 |
. . . . 5
|
| 17 | 16 | mpteq2i 4741 |
. . . 4
|
| 18 | 8, 17 | eqtri 2644 |
. . 3
|
| 19 | fourierdlem100.t |
. . . . . 6
| |
| 20 | fourierlemiblglemlem.p |
. . . . . 6
| |
| 21 | fourierdlem100.m |
. . . . . 6
| |
| 22 | fourierdlem100.q |
. . . . . 6
| |
| 23 | elioo4g 12234 |
. . . . . . . . 9
| |
| 24 | 3, 23 | sylib 208 |
. . . . . . . 8
|
| 25 | 24 | simprd 479 |
. . . . . . 7
|
| 26 | 25 | simpld 475 |
. . . . . 6
|
| 27 | id 22 |
. . . . . . . . . . 11
| |
| 28 | 19 | eqcomi 2631 |
. . . . . . . . . . . . 13
|
| 29 | 28 | oveq2i 6661 |
. . . . . . . . . . . 12
|
| 30 | 29 | a1i 11 |
. . . . . . . . . . 11
|
| 31 | 27, 30 | oveq12d 6668 |
. . . . . . . . . 10
|
| 32 | 31 | eleq1d 2686 |
. . . . . . . . 9
|
| 33 | 32 | rexbidv 3052 |
. . . . . . . 8
|
| 34 | 33 | cbvrabv 3199 |
. . . . . . 7
|
| 35 | 34 | uneq2i 3764 |
. . . . . 6
|
| 36 | fourierdlem100.n |
. . . . . . 7
| |
| 37 | fourierdlem100.h |
. . . . . . . . . 10
| |
| 38 | 29 | eqcomi 2631 |
. . . . . . . . . . . . . . . 16
|
| 39 | 38 | oveq2i 6661 |
. . . . . . . . . . . . . . 15
|
| 40 | 39 | eleq1i 2692 |
. . . . . . . . . . . . . 14
|
| 41 | 40 | rexbii 3041 |
. . . . . . . . . . . . 13
|
| 42 | 41 | rgenw 2924 |
. . . . . . . . . . . 12
|
| 43 | rabbi 3120 |
. . . . . . . . . . . 12
| |
| 44 | 42, 43 | mpbi 220 |
. . . . . . . . . . 11
|
| 45 | 44 | uneq2i 3764 |
. . . . . . . . . 10
|
| 46 | 37, 45 | eqtri 2644 |
. . . . . . . . 9
|
| 47 | 46 | fveq2i 6194 |
. . . . . . . 8
|
| 48 | 47 | oveq1i 6660 |
. . . . . . 7
|
| 49 | 36, 48 | eqtri 2644 |
. . . . . 6
|
| 50 | fourierdlem100.s |
. . . . . . 7
| |
| 51 | isoeq5 6571 |
. . . . . . . . 9
| |
| 52 | 46, 51 | ax-mp 5 |
. . . . . . . 8
|
| 53 | 52 | iotabii 5873 |
. . . . . . 7
|
| 54 | 50, 53 | eqtri 2644 |
. . . . . 6
|
| 55 | 19, 20, 21, 22, 2, 5, 26, 8, 35, 49, 54 | fourierdlem54 40377 |
. . . . 5
|
| 56 | 55 | simpld 475 |
. . . 4
|
| 57 | 56 | simpld 475 |
. . 3
|
| 58 | 56 | simprd 479 |
. . 3
|
| 59 | 1, 6 | fssresd 6071 |
. . 3
|
| 60 | ioossicc 12259 |
. . . . . 6
| |
| 61 | 2 | adantr 481 |
. . . . . . . 8
|
| 62 | 61 | rexrd 10089 |
. . . . . . 7
|
| 63 | 3 | adantr 481 |
. . . . . . . . 9
|
| 64 | 63, 4 | syl 17 |
. . . . . . . 8
|
| 65 | 64 | rexrd 10089 |
. . . . . . 7
|
| 66 | 8, 57, 58 | fourierdlem15 40339 |
. . . . . . . 8
|
| 67 | 66 | adantr 481 |
. . . . . . 7
|
| 68 | simpr 477 |
. . . . . . 7
| |
| 69 | 62, 65, 67, 68 | fourierdlem8 40332 |
. . . . . 6
|
| 70 | 60, 69 | syl5ss 3614 |
. . . . 5
|
| 71 | 70 | resabs1d 5428 |
. . . 4
|
| 72 | 21 | adantr 481 |
. . . . 5
|
| 73 | 22 | adantr 481 |
. . . . 5
|
| 74 | 1 | adantr 481 |
. . . . 5
|
| 75 | fourierdlem100.per |
. . . . . 6
| |
| 76 | 75 | adantlr 751 |
. . . . 5
|
| 77 | fourierdlem100.fcn |
. . . . . 6
| |
| 78 | 77 | adantlr 751 |
. . . . 5
|
| 79 | fourierdlem100.e |
. . . . 5
| |
| 80 | fourierdlem100.j |
. . . . 5
| |
| 81 | eqid 2622 |
. . . . 5
| |
| 82 | eqid 2622 |
. . . . 5
| |
| 83 | eqid 2622 |
. . . . 5
| |
| 84 | fourierdlem100.i |
. . . . 5
| |
| 85 | 20, 19, 72, 73, 74, 76, 78, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 82, 83, 84 | fourierdlem90 40413 |
. . . 4
|
| 86 | 71, 85 | eqeltrd 2701 |
. . 3
|
| 87 | fourierdlem100.r |
. . . . . 6
| |
| 88 | 87 | adantlr 751 |
. . . . 5
|
| 89 | eqid 2622 |
. . . . 5
| |
| 90 | 20, 19, 72, 73, 74, 76, 78, 88, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 84, 89 | fourierdlem89 40412 |
. . . 4
|
| 91 | 71 | eqcomd 2628 |
. . . . 5
|
| 92 | 91 | oveq1d 6665 |
. . . 4
|
| 93 | 90, 92 | eleqtrd 2703 |
. . 3
|
| 94 | fourierdlem100.l |
. . . . . 6
| |
| 95 | 94 | adantlr 751 |
. . . . 5
|
| 96 | eqid 2622 |
. . . . 5
| |
| 97 | 20, 19, 72, 73, 74, 76, 78, 95, 61, 63, 8, 37, 36, 50, 79, 80, 68, 81, 84, 96 | fourierdlem91 40414 |
. . . 4
|
| 98 | 91 | oveq1d 6665 |
. . . 4
|
| 99 | 97, 98 | eleqtrd 2703 |
. . 3
|
| 100 | 18, 57, 58, 59, 86, 93, 99 | fourierdlem69 40392 |
. 2
|
| 101 | 7, 100 | eqeltrrd 2702 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cc 9257 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-ofr 6898 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-xnn0 11364 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ioc 12180 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-mulg 17541 df-cntz 17750 df-cmn 18195 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-lp 20940 df-cn 21031 df-cnp 21032 df-cmp 21190 df-tx 21365 df-hmeo 21558 df-xms 22125 df-ms 22126 df-tms 22127 df-cncf 22681 df-ovol 23233 df-vol 23234 df-mbf 23388 df-itg1 23389 df-itg2 23390 df-ibl 23391 df-itg 23392 df-0p 23437 df-limc 23630 |
| This theorem is referenced by: fourierdlem105 40428 |
| Copyright terms: Public domain | W3C validator |