MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma2 Structured version   Visualization version   Unicode version

Theorem logsqvma2 25232
Description: The Möbius inverse of logsqvma 25231. Equation 10.4.8 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma2  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  (Λ `  ( N  /  d ) ) )  +  ( (Λ `  N )  x.  ( log `  N ) ) ) )
Distinct variable group:    x, d, N

Proof of Theorem logsqvma2
Dummy variables  i 
j  k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12772 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
1 ... k )  e. 
Fin )
2 dvdsssfz1 15040 . . . . . . . . . 10  |-  ( k  e.  NN  ->  { x  e.  NN  |  x  ||  k }  C_  ( 1 ... k ) )
3 ssfi 8180 . . . . . . . . . 10  |-  ( ( ( 1 ... k
)  e.  Fin  /\  { x  e.  NN  |  x  ||  k }  C_  ( 1 ... k
) )  ->  { x  e.  NN  |  x  ||  k }  e.  Fin )
41, 2, 3syl2anc 693 . . . . . . . . 9  |-  ( k  e.  NN  ->  { x  e.  NN  |  x  ||  k }  e.  Fin )
5 ssrab2 3687 . . . . . . . . . . . 12  |-  { x  e.  NN  |  x  ||  k }  C_  NN
6 simpr 477 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  d  e.  { x  e.  NN  |  x  ||  k } )
75, 6sseldi 3601 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  d  e.  NN )
8 vmacl 24844 . . . . . . . . . . 11  |-  ( d  e.  NN  ->  (Λ `  d )  e.  RR )
97, 8syl 17 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (Λ `  d )  e.  RR )
10 dvdsdivcl 15038 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
k  /  d )  e.  { x  e.  NN  |  x  ||  k } )
115, 10sseldi 3601 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
k  /  d )  e.  NN )
12 vmacl 24844 . . . . . . . . . . 11  |-  ( ( k  /  d )  e.  NN  ->  (Λ `  ( k  /  d
) )  e.  RR )
1311, 12syl 17 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (Λ `  ( k  /  d
) )  e.  RR )
149, 13remulcld 10070 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  e.  RR )
154, 14fsumrecl 14465 . . . . . . . 8  |-  ( k  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d
)  x.  (Λ `  (
k  /  d ) ) )  e.  RR )
16 vmacl 24844 . . . . . . . . 9  |-  ( k  e.  NN  ->  (Λ `  k )  e.  RR )
17 nnrp 11842 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  RR+ )
1817relogcld 24369 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( log `  k )  e.  RR )
1916, 18remulcld 10070 . . . . . . . 8  |-  ( k  e.  NN  ->  (
(Λ `  k )  x.  ( log `  k
) )  e.  RR )
2015, 19readdcld 10069 . . . . . . 7  |-  ( k  e.  NN  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  e.  RR )
2120recnd 10068 . . . . . 6  |-  ( k  e.  NN  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  e.  CC )
2221adantl 482 . . . . 5  |-  ( ( N  e.  NN  /\  k  e.  NN )  ->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) )  e.  CC )
23 eqid 2622 . . . . 5  |-  ( k  e.  NN  |->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) ) )  =  ( k  e.  NN  |->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) ) )
2422, 23fmptd 6385 . . . 4  |-  ( N  e.  NN  ->  (
k  e.  NN  |->  (
sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) : NN --> CC )
25 ssrab2 3687 . . . . . . . . 9  |-  { x  e.  NN  |  x  ||  n }  C_  NN
26 simpr 477 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  NN )  /\  m  e.  {
x  e.  NN  |  x  ||  n } )  ->  m  e.  {
x  e.  NN  |  x  ||  n } )
2725, 26sseldi 3601 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  n  e.  NN )  /\  m  e.  {
x  e.  NN  |  x  ||  n } )  ->  m  e.  NN )
28 breq2 4657 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
x  ||  k  <->  x  ||  m
) )
2928rabbidv 3189 . . . . . . . . . . 11  |-  ( k  =  m  ->  { x  e.  NN  |  x  ||  k }  =  {
x  e.  NN  |  x  ||  m } )
30 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  (
k  /  d )  =  ( m  / 
d ) )
3130fveq2d 6195 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (Λ `  ( k  /  d
) )  =  (Λ `  ( m  /  d
) ) )
3231oveq2d 6666 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) ) )
3332adantr 481 . . . . . . . . . . 11  |-  ( ( k  =  m  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) ) )
3429, 33sumeq12dv 14437 . . . . . . . . . 10  |-  ( k  =  m  ->  sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d
)  x.  (Λ `  (
k  /  d ) ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  m }  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) ) )
35 fveq2 6191 . . . . . . . . . . 11  |-  ( k  =  m  ->  (Λ `  k )  =  (Λ `  m ) )
36 fveq2 6191 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( log `  k )  =  ( log `  m
) )
3735, 36oveq12d 6668 . . . . . . . . . 10  |-  ( k  =  m  ->  (
(Λ `  k )  x.  ( log `  k
) )  =  ( (Λ `  m )  x.  ( log `  m
) ) )
3834, 37oveq12d 6668 . . . . . . . . 9  |-  ( k  =  m  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  m } 
( (Λ `  d )  x.  (Λ `  ( m  /  d ) ) )  +  ( (Λ `  m )  x.  ( log `  m ) ) ) )
39 ovex 6678 . . . . . . . . 9  |-  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  e.  _V
4038, 23, 39fvmpt3i 6287 . . . . . . . 8  |-  ( m  e.  NN  ->  (
( k  e.  NN  |->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  m
)  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  m }  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) )  +  ( (Λ `  m
)  x.  ( log `  m ) ) ) )
4127, 40syl 17 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  n  e.  NN )  /\  m  e.  {
x  e.  NN  |  x  ||  n } )  ->  ( ( k  e.  NN  |->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) ) ) `  m )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  m } 
( (Λ `  d )  x.  (Λ `  ( m  /  d ) ) )  +  ( (Λ `  m )  x.  ( log `  m ) ) ) )
4241sumeq2dv 14433 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  NN )  -> 
sum_ m  e.  { x  e.  NN  |  x  ||  n }  ( (
k  e.  NN  |->  (
sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  m
)  =  sum_ m  e.  { x  e.  NN  |  x  ||  n } 
( sum_ d  e.  {
x  e.  NN  |  x  ||  m }  (
(Λ `  d )  x.  (Λ `  ( m  /  d ) ) )  +  ( (Λ `  m )  x.  ( log `  m ) ) ) )
43 logsqvma 25231 . . . . . . 7  |-  ( n  e.  NN  ->  sum_ m  e.  { x  e.  NN  |  x  ||  n } 
( sum_ d  e.  {
x  e.  NN  |  x  ||  m }  (
(Λ `  d )  x.  (Λ `  ( m  /  d ) ) )  +  ( (Λ `  m )  x.  ( log `  m ) ) )  =  ( ( log `  n ) ^ 2 ) )
4443adantl 482 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  NN )  -> 
sum_ m  e.  { x  e.  NN  |  x  ||  n }  ( sum_ d  e.  { x  e.  NN  |  x  ||  m }  ( (Λ `  d )  x.  (Λ `  ( m  /  d
) ) )  +  ( (Λ `  m
)  x.  ( log `  m ) ) )  =  ( ( log `  n ) ^ 2 ) )
4542, 44eqtr2d 2657 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  NN )  ->  ( ( log `  n
) ^ 2 )  =  sum_ m  e.  {
x  e.  NN  |  x  ||  n }  (
( k  e.  NN  |->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  m
) )
4645mpteq2dva 4744 . . . 4  |-  ( N  e.  NN  ->  (
n  e.  NN  |->  ( ( log `  n
) ^ 2 ) )  =  ( n  e.  NN  |->  sum_ m  e.  { x  e.  NN  |  x  ||  n } 
( ( k  e.  NN  |->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d
)  x.  (Λ `  (
k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k
) ) ) ) `
 m ) ) )
4724, 46muinv 24919 . . 3  |-  ( N  e.  NN  ->  (
k  e.  NN  |->  (
sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) )  =  ( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( (
mmu `  j )  x.  ( ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) ) `  (
i  /  j ) ) ) ) )
4847fveq1d 6193 . 2  |-  ( N  e.  NN  ->  (
( k  e.  NN  |->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  N
)  =  ( ( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( (
mmu `  j )  x.  ( ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) ) `  (
i  /  j ) ) ) ) `  N ) )
49 breq2 4657 . . . . . 6  |-  ( k  =  N  ->  (
x  ||  k  <->  x  ||  N
) )
5049rabbidv 3189 . . . . 5  |-  ( k  =  N  ->  { x  e.  NN  |  x  ||  k }  =  {
x  e.  NN  |  x  ||  N } )
51 oveq1 6657 . . . . . . . 8  |-  ( k  =  N  ->  (
k  /  d )  =  ( N  / 
d ) )
5251fveq2d 6195 . . . . . . 7  |-  ( k  =  N  ->  (Λ `  ( k  /  d
) )  =  (Λ `  ( N  /  d
) ) )
5352oveq2d 6666 . . . . . 6  |-  ( k  =  N  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( N  /  d
) ) ) )
5453adantr 481 . . . . 5  |-  ( ( k  =  N  /\  d  e.  { x  e.  NN  |  x  ||  k } )  ->  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( N  /  d
) ) ) )
5550, 54sumeq12dv 14437 . . . 4  |-  ( k  =  N  ->  sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d
)  x.  (Λ `  (
k  /  d ) ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  (Λ `  ( N  /  d
) ) ) )
56 fveq2 6191 . . . . 5  |-  ( k  =  N  ->  (Λ `  k )  =  (Λ `  N ) )
57 fveq2 6191 . . . . 5  |-  ( k  =  N  ->  ( log `  k )  =  ( log `  N
) )
5856, 57oveq12d 6668 . . . 4  |-  ( k  =  N  ->  (
(Λ `  k )  x.  ( log `  k
) )  =  ( (Λ `  N )  x.  ( log `  N
) ) )
5955, 58oveq12d 6668 . . 3  |-  ( k  =  N  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  k }  ( (Λ `  d )  x.  (Λ `  ( k  /  d
) ) )  +  ( (Λ `  k
)  x.  ( log `  k ) ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  (Λ `  ( N  /  d ) ) )  +  ( (Λ `  N )  x.  ( log `  N ) ) ) )
6059, 23, 39fvmpt3i 6287 . 2  |-  ( N  e.  NN  ->  (
( k  e.  NN  |->  ( sum_ d  e.  {
x  e.  NN  |  x  ||  k }  (
(Λ `  d )  x.  (Λ `  ( k  /  d ) ) )  +  ( (Λ `  k )  x.  ( log `  k ) ) ) ) `  N
)  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  (Λ `  ( N  /  d
) ) )  +  ( (Λ `  N
)  x.  ( log `  N ) ) ) )
61 fveq2 6191 . . . . . 6  |-  ( j  =  d  ->  (
mmu `  j )  =  ( mmu `  d ) )
62 oveq2 6658 . . . . . . . 8  |-  ( j  =  d  ->  (
i  /  j )  =  ( i  / 
d ) )
6362fveq2d 6195 . . . . . . 7  |-  ( j  =  d  ->  ( log `  ( i  / 
j ) )  =  ( log `  (
i  /  d ) ) )
6463oveq1d 6665 . . . . . 6  |-  ( j  =  d  ->  (
( log `  (
i  /  j ) ) ^ 2 )  =  ( ( log `  ( i  /  d
) ) ^ 2 ) )
6561, 64oveq12d 6668 . . . . 5  |-  ( j  =  d  ->  (
( mmu `  j
)  x.  ( ( log `  ( i  /  j ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  (
( log `  (
i  /  d ) ) ^ 2 ) ) )
6665cbvsumv 14426 . . . 4  |-  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( log `  (
i  /  j ) ) ^ 2 ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  d )  x.  (
( log `  (
i  /  d ) ) ^ 2 ) )
67 breq2 4657 . . . . . 6  |-  ( i  =  N  ->  (
x  ||  i  <->  x  ||  N
) )
6867rabbidv 3189 . . . . 5  |-  ( i  =  N  ->  { x  e.  NN  |  x  ||  i }  =  {
x  e.  NN  |  x  ||  N } )
69 oveq1 6657 . . . . . . . . 9  |-  ( i  =  N  ->  (
i  /  d )  =  ( N  / 
d ) )
7069fveq2d 6195 . . . . . . . 8  |-  ( i  =  N  ->  ( log `  ( i  / 
d ) )  =  ( log `  ( N  /  d ) ) )
7170oveq1d 6665 . . . . . . 7  |-  ( i  =  N  ->  (
( log `  (
i  /  d ) ) ^ 2 )  =  ( ( log `  ( N  /  d
) ) ^ 2 ) )
7271oveq2d 6666 . . . . . 6  |-  ( i  =  N  ->  (
( mmu `  d
)  x.  ( ( log `  ( i  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) ) )
7372adantr 481 . . . . 5  |-  ( ( i  =  N  /\  d  e.  { x  e.  NN  |  x  ||  i } )  ->  (
( mmu `  d
)  x.  ( ( log `  ( i  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) ) )
7468, 73sumeq12dv 14437 . . . 4  |-  ( i  =  N  ->  sum_ d  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  d )  x.  (
( log `  (
i  /  d ) ) ^ 2 ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) ) )
7566, 74syl5eq 2668 . . 3  |-  ( i  =  N  ->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( log `  (
i  /  j ) ) ^ 2 ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) ) )
76 ssrab2 3687 . . . . . . . 8  |-  { x  e.  NN  |  x  ||  i }  C_  NN
77 dvdsdivcl 15038 . . . . . . . 8  |-  ( ( i  e.  NN  /\  j  e.  { x  e.  NN  |  x  ||  i } )  ->  (
i  /  j )  e.  { x  e.  NN  |  x  ||  i } )
7876, 77sseldi 3601 . . . . . . 7  |-  ( ( i  e.  NN  /\  j  e.  { x  e.  NN  |  x  ||  i } )  ->  (
i  /  j )  e.  NN )
79 fveq2 6191 . . . . . . . . 9  |-  ( n  =  ( i  / 
j )  ->  ( log `  n )  =  ( log `  (
i  /  j ) ) )
8079oveq1d 6665 . . . . . . . 8  |-  ( n  =  ( i  / 
j )  ->  (
( log `  n
) ^ 2 )  =  ( ( log `  ( i  /  j
) ) ^ 2 ) )
81 eqid 2622 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) )  =  ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) )
82 ovex 6678 . . . . . . . 8  |-  ( ( log `  n ) ^ 2 )  e. 
_V
8380, 81, 82fvmpt3i 6287 . . . . . . 7  |-  ( ( i  /  j )  e.  NN  ->  (
( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) )  =  ( ( log `  ( i  /  j
) ) ^ 2 ) )
8478, 83syl 17 . . . . . 6  |-  ( ( i  e.  NN  /\  j  e.  { x  e.  NN  |  x  ||  i } )  ->  (
( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) )  =  ( ( log `  ( i  /  j
) ) ^ 2 ) )
8584oveq2d 6666 . . . . 5  |-  ( ( i  e.  NN  /\  j  e.  { x  e.  NN  |  x  ||  i } )  ->  (
( mmu `  j
)  x.  ( ( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) ) )  =  ( ( mmu `  j )  x.  ( ( log `  ( i  /  j
) ) ^ 2 ) ) )
8685sumeq2dv 14433 . . . 4  |-  ( i  e.  NN  ->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) ) )  =  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( log `  (
i  /  j ) ) ^ 2 ) ) )
8786mpteq2ia 4740 . . 3  |-  ( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( n  e.  NN  |->  ( ( log `  n
) ^ 2 ) ) `  ( i  /  j ) ) ) )  =  ( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( (
mmu `  j )  x.  ( ( log `  (
i  /  j ) ) ^ 2 ) ) )
88 sumex 14418 . . 3  |-  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( ( mmu `  j )  x.  (
( log `  (
i  /  j ) ) ^ 2 ) )  e.  _V
8975, 87, 88fvmpt3i 6287 . 2  |-  ( N  e.  NN  ->  (
( i  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  i }  ( (
mmu `  j )  x.  ( ( n  e.  NN  |->  ( ( log `  n ) ^ 2 ) ) `  (
i  /  j ) ) ) ) `  N )  =  sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (
mmu `  d )  x.  ( ( log `  ( N  /  d ) ) ^ 2 ) ) )
9048, 60, 893eqtr3rd 2665 1  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( ( mmu `  d )  x.  (
( log `  ( N  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( (Λ `  d )  x.  (Λ `  ( N  /  d ) ) )  +  ( (Λ `  N )  x.  ( log `  N ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    x. cmul 9941    / cdiv 10684   NNcn 11020   2c2 11070   ...cfz 12326   ^cexp 12860   sum_csu 14416    || cdvds 14983   logclog 24301  Λcvma 24818   mmucmu 24821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-vma 24824  df-mu 24827
This theorem is referenced by:  selberg  25237
  Copyright terms: Public domain W3C validator