MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pclogsum Structured version   Visualization version   Unicode version

Theorem pclogsum 24940
Description: The logarithmic analogue of pcprod 15599. The sum of the logarithms of the primes dividing  A multiplied by their powers yields the logarithm of  A. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
pclogsum  |-  ( A  e.  NN  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime ) ( ( p  pCnt  A )  x.  ( log `  p ) )  =  ( log `  A
) )
Distinct variable group:    A, p

Proof of Theorem pclogsum
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . . . . 6  |-  ( p  e.  ( ( 1 ... A )  i^i 
Prime )  <->  ( p  e.  ( 1 ... A
)  /\  p  e.  Prime ) )
21baib 944 . . . . 5  |-  ( p  e.  ( 1 ... A )  ->  (
p  e.  ( ( 1 ... A )  i^i  Prime )  <->  p  e.  Prime ) )
32ifbid 4108 . . . 4  |-  ( p  e.  ( 1 ... A )  ->  if ( p  e.  (
( 1 ... A
)  i^i  Prime ) ,  ( log `  (
p ^ ( p 
pCnt  A ) ) ) ,  0 )  =  if ( p  e. 
Prime ,  ( log `  ( p ^ (
p  pCnt  A )
) ) ,  0 ) )
4 fvif 6204 . . . . 5  |-  ( log `  if ( p  e. 
Prime ,  ( p ^ ( p  pCnt  A ) ) ,  1 ) )  =  if ( p  e.  Prime ,  ( log `  (
p ^ ( p 
pCnt  A ) ) ) ,  ( log `  1
) )
5 log1 24332 . . . . . 6  |-  ( log `  1 )  =  0
6 ifeq2 4091 . . . . . 6  |-  ( ( log `  1 )  =  0  ->  if ( p  e.  Prime ,  ( log `  (
p ^ ( p 
pCnt  A ) ) ) ,  ( log `  1
) )  =  if ( p  e.  Prime ,  ( log `  (
p ^ ( p 
pCnt  A ) ) ) ,  0 ) )
75, 6ax-mp 5 . . . . 5  |-  if ( p  e.  Prime ,  ( log `  ( p ^ ( p  pCnt  A ) ) ) ,  ( log `  1
) )  =  if ( p  e.  Prime ,  ( log `  (
p ^ ( p 
pCnt  A ) ) ) ,  0 )
84, 7eqtri 2644 . . . 4  |-  ( log `  if ( p  e. 
Prime ,  ( p ^ ( p  pCnt  A ) ) ,  1 ) )  =  if ( p  e.  Prime ,  ( log `  (
p ^ ( p 
pCnt  A ) ) ) ,  0 )
93, 8syl6eqr 2674 . . 3  |-  ( p  e.  ( 1 ... A )  ->  if ( p  e.  (
( 1 ... A
)  i^i  Prime ) ,  ( log `  (
p ^ ( p 
pCnt  A ) ) ) ,  0 )  =  ( log `  if ( p  e.  Prime ,  ( p ^ (
p  pCnt  A )
) ,  1 ) ) )
109sumeq2i 14429 . 2  |-  sum_ p  e.  ( 1 ... A
) if ( p  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  ( p ^ (
p  pCnt  A )
) ) ,  0 )  =  sum_ p  e.  ( 1 ... A
) ( log `  if ( p  e.  Prime ,  ( p ^ (
p  pCnt  A )
) ,  1 ) )
11 inss1 3833 . . . 4  |-  ( ( 1 ... A )  i^i  Prime )  C_  (
1 ... A )
12 simpr 477 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  p  e.  ( ( 1 ... A )  i^i  Prime ) )
1311, 12sseldi 3601 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  p  e.  ( 1 ... A
) )
14 elfznn 12370 . . . . . . . . . 10  |-  ( p  e.  ( 1 ... A )  ->  p  e.  NN )
1513, 14syl 17 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  p  e.  NN )
16 inss2 3834 . . . . . . . . . . 11  |-  ( ( 1 ... A )  i^i  Prime )  C_  Prime
1716, 12sseldi 3601 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  p  e.  Prime )
18 simpl 473 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  A  e.  NN )
1917, 18pccld 15555 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
p  pCnt  A )  e.  NN0 )
2015, 19nnexpcld 13030 . . . . . . . 8  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
p ^ ( p 
pCnt  A ) )  e.  NN )
2120nnrpd 11870 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
p ^ ( p 
pCnt  A ) )  e.  RR+ )
2221relogcld 24369 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  ( p ^
( p  pCnt  A
) ) )  e.  RR )
2322recnd 10068 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  ( p ^
( p  pCnt  A
) ) )  e.  CC )
2423ralrimiva 2966 . . . 4  |-  ( A  e.  NN  ->  A. p  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  (
p ^ ( p 
pCnt  A ) ) )  e.  CC )
25 fzfi 12771 . . . . . 6  |-  ( 1 ... A )  e. 
Fin
2625olci 406 . . . . 5  |-  ( ( 1 ... A ) 
C_  ( ZZ>= `  1
)  \/  ( 1 ... A )  e. 
Fin )
27 sumss2 14457 . . . . 5  |-  ( ( ( ( ( 1 ... A )  i^i 
Prime )  C_  ( 1 ... A )  /\  A. p  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  ( p ^ (
p  pCnt  A )
) )  e.  CC )  /\  ( ( 1 ... A )  C_  ( ZZ>= `  1 )  \/  ( 1 ... A
)  e.  Fin )
)  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  (
p ^ ( p 
pCnt  A ) ) )  =  sum_ p  e.  ( 1 ... A ) if ( p  e.  ( ( 1 ... A )  i^i  Prime ) ,  ( log `  (
p ^ ( p 
pCnt  A ) ) ) ,  0 ) )
2826, 27mpan2 707 . . . 4  |-  ( ( ( ( 1 ... A )  i^i  Prime ) 
C_  ( 1 ... A )  /\  A. p  e.  ( (
1 ... A )  i^i 
Prime ) ( log `  (
p ^ ( p 
pCnt  A ) ) )  e.  CC )  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  ( p ^ (
p  pCnt  A )
) )  =  sum_ p  e.  ( 1 ... A ) if ( p  e.  ( ( 1 ... A )  i^i  Prime ) ,  ( log `  ( p ^ ( p  pCnt  A ) ) ) ,  0 ) )
2911, 24, 28sylancr 695 . . 3  |-  ( A  e.  NN  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  (
p ^ ( p 
pCnt  A ) ) )  =  sum_ p  e.  ( 1 ... A ) if ( p  e.  ( ( 1 ... A )  i^i  Prime ) ,  ( log `  (
p ^ ( p 
pCnt  A ) ) ) ,  0 ) )
3015nnrpd 11870 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  p  e.  RR+ )
3119nn0zd 11480 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
p  pCnt  A )  e.  ZZ )
32 relogexp 24342 . . . . 5  |-  ( ( p  e.  RR+  /\  (
p  pCnt  A )  e.  ZZ )  ->  ( log `  ( p ^
( p  pCnt  A
) ) )  =  ( ( p  pCnt  A )  x.  ( log `  p ) ) )
3330, 31, 32syl2anc 693 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  ( p ^
( p  pCnt  A
) ) )  =  ( ( p  pCnt  A )  x.  ( log `  p ) ) )
3433sumeq2dv 14433 . . 3  |-  ( A  e.  NN  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  (
p ^ ( p 
pCnt  A ) ) )  =  sum_ p  e.  ( ( 1 ... A
)  i^i  Prime ) ( ( p  pCnt  A
)  x.  ( log `  p ) ) )
3529, 34eqtr3d 2658 . 2  |-  ( A  e.  NN  ->  sum_ p  e.  ( 1 ... A
) if ( p  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  ( p ^ (
p  pCnt  A )
) ) ,  0 )  =  sum_ p  e.  ( ( 1 ... A )  i^i  Prime ) ( ( p  pCnt  A )  x.  ( log `  p ) ) )
3614adantl 482 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  ->  p  e.  NN )
37 eleq1 2689 . . . . . . . 8  |-  ( n  =  p  ->  (
n  e.  Prime  <->  p  e.  Prime ) )
38 id 22 . . . . . . . . 9  |-  ( n  =  p  ->  n  =  p )
39 oveq1 6657 . . . . . . . . 9  |-  ( n  =  p  ->  (
n  pCnt  A )  =  ( p  pCnt  A ) )
4038, 39oveq12d 6668 . . . . . . . 8  |-  ( n  =  p  ->  (
n ^ ( n 
pCnt  A ) )  =  ( p ^ (
p  pCnt  A )
) )
4137, 40ifbieq1d 4109 . . . . . . 7  |-  ( n  =  p  ->  if ( n  e.  Prime ,  ( n ^ (
n  pCnt  A )
) ,  1 )  =  if ( p  e.  Prime ,  ( p ^ ( p  pCnt  A ) ) ,  1 ) )
4241fveq2d 6195 . . . . . 6  |-  ( n  =  p  ->  ( log `  if ( n  e.  Prime ,  ( n ^ ( n  pCnt  A ) ) ,  1 ) )  =  ( log `  if ( p  e.  Prime ,  ( p ^ ( p 
pCnt  A ) ) ,  1 ) ) )
43 eqid 2622 . . . . . 6  |-  ( n  e.  NN  |->  ( log `  if ( n  e. 
Prime ,  ( n ^ ( n  pCnt  A ) ) ,  1 ) ) )  =  ( n  e.  NN  |->  ( log `  if ( n  e.  Prime ,  ( n ^ ( n 
pCnt  A ) ) ,  1 ) ) )
44 fvex 6201 . . . . . 6  |-  ( log `  if ( p  e. 
Prime ,  ( p ^ ( p  pCnt  A ) ) ,  1 ) )  e.  _V
4542, 43, 44fvmpt 6282 . . . . 5  |-  ( p  e.  NN  ->  (
( n  e.  NN  |->  ( log `  if ( n  e.  Prime ,  ( n ^ ( n 
pCnt  A ) ) ,  1 ) ) ) `
 p )  =  ( log `  if ( p  e.  Prime ,  ( p ^ (
p  pCnt  A )
) ,  1 ) ) )
4636, 45syl 17 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  ->  ( ( n  e.  NN  |->  ( log `  if ( n  e. 
Prime ,  ( n ^ ( n  pCnt  A ) ) ,  1 ) ) ) `  p )  =  ( log `  if ( p  e.  Prime ,  ( p ^ ( p 
pCnt  A ) ) ,  1 ) ) )
47 elnnuz 11724 . . . . 5  |-  ( A  e.  NN  <->  A  e.  ( ZZ>= `  1 )
)
4847biimpi 206 . . . 4  |-  ( A  e.  NN  ->  A  e.  ( ZZ>= `  1 )
)
4936adantr 481 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  /\  p  e.  Prime )  ->  p  e.  NN )
50 simpr 477 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  /\  p  e.  Prime )  ->  p  e.  Prime )
51 simpll 790 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  /\  p  e.  Prime )  ->  A  e.  NN )
5250, 51pccld 15555 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  /\  p  e.  Prime )  ->  ( p  pCnt  A )  e.  NN0 )
5349, 52nnexpcld 13030 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  /\  p  e.  Prime )  ->  ( p ^
( p  pCnt  A
) )  e.  NN )
54 1nn 11031 . . . . . . . . 9  |-  1  e.  NN
5554a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  /\  -.  p  e. 
Prime )  ->  1  e.  NN )
5653, 55ifclda 4120 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  ->  if ( p  e.  Prime ,  ( p ^ ( p  pCnt  A ) ) ,  1 )  e.  NN )
5756nnrpd 11870 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  ->  if ( p  e.  Prime ,  ( p ^ ( p  pCnt  A ) ) ,  1 )  e.  RR+ )
5857relogcld 24369 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  ->  ( log `  if ( p  e.  Prime ,  ( p ^ (
p  pCnt  A )
) ,  1 ) )  e.  RR )
5958recnd 10068 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  ->  ( log `  if ( p  e.  Prime ,  ( p ^ (
p  pCnt  A )
) ,  1 ) )  e.  CC )
6046, 48, 59fsumser 14461 . . 3  |-  ( A  e.  NN  ->  sum_ p  e.  ( 1 ... A
) ( log `  if ( p  e.  Prime ,  ( p ^ (
p  pCnt  A )
) ,  1 ) )  =  (  seq 1 (  +  , 
( n  e.  NN  |->  ( log `  if ( n  e.  Prime ,  ( n ^ ( n 
pCnt  A ) ) ,  1 ) ) ) ) `  A ) )
61 rpmulcl 11855 . . . . 5  |-  ( ( p  e.  RR+  /\  m  e.  RR+ )  ->  (
p  x.  m )  e.  RR+ )
6261adantl 482 . . . 4  |-  ( ( A  e.  NN  /\  ( p  e.  RR+  /\  m  e.  RR+ ) )  -> 
( p  x.  m
)  e.  RR+ )
63 eqid 2622 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ ( n 
pCnt  A ) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ (
n  pCnt  A )
) ,  1 ) )
64 ovex 6678 . . . . . . . 8  |-  ( p ^ ( p  pCnt  A ) )  e.  _V
65 1ex 10035 . . . . . . . 8  |-  1  e.  _V
6664, 65ifex 4156 . . . . . . 7  |-  if ( p  e.  Prime ,  ( p ^ ( p 
pCnt  A ) ) ,  1 )  e.  _V
6741, 63, 66fvmpt 6282 . . . . . 6  |-  ( p  e.  NN  ->  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ (
n  pCnt  A )
) ,  1 ) ) `  p )  =  if ( p  e.  Prime ,  ( p ^ ( p  pCnt  A ) ) ,  1 ) )
6836, 67syl 17 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ ( n 
pCnt  A ) ) ,  1 ) ) `  p )  =  if ( p  e.  Prime ,  ( p ^ (
p  pCnt  A )
) ,  1 ) )
6968, 57eqeltrd 2701 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ ( n 
pCnt  A ) ) ,  1 ) ) `  p )  e.  RR+ )
70 relogmul 24338 . . . . 5  |-  ( ( p  e.  RR+  /\  m  e.  RR+ )  ->  ( log `  ( p  x.  m ) )  =  ( ( log `  p
)  +  ( log `  m ) ) )
7170adantl 482 . . . 4  |-  ( ( A  e.  NN  /\  ( p  e.  RR+  /\  m  e.  RR+ ) )  -> 
( log `  (
p  x.  m ) )  =  ( ( log `  p )  +  ( log `  m
) ) )
7268fveq2d 6195 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  ->  ( log `  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ (
n  pCnt  A )
) ,  1 ) ) `  p ) )  =  ( log `  if ( p  e. 
Prime ,  ( p ^ ( p  pCnt  A ) ) ,  1 ) ) )
7372, 46eqtr4d 2659 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( 1 ... A ) )  ->  ( log `  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ (
n  pCnt  A )
) ,  1 ) ) `  p ) )  =  ( ( n  e.  NN  |->  ( log `  if ( n  e.  Prime ,  ( n ^ ( n 
pCnt  A ) ) ,  1 ) ) ) `
 p ) )
7462, 69, 48, 71, 73seqhomo 12848 . . 3  |-  ( A  e.  NN  ->  ( log `  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ (
n  pCnt  A )
) ,  1 ) ) ) `  A
) )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( log `  if ( n  e.  Prime ,  ( n ^ (
n  pCnt  A )
) ,  1 ) ) ) ) `  A ) )
7563pcprod 15599 . . . 4  |-  ( A  e.  NN  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ (
n  pCnt  A )
) ,  1 ) ) ) `  A
)  =  A )
7675fveq2d 6195 . . 3  |-  ( A  e.  NN  ->  ( log `  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ (
n  pCnt  A )
) ,  1 ) ) ) `  A
) )  =  ( log `  A ) )
7760, 74, 763eqtr2d 2662 . 2  |-  ( A  e.  NN  ->  sum_ p  e.  ( 1 ... A
) ( log `  if ( p  e.  Prime ,  ( p ^ (
p  pCnt  A )
) ,  1 ) )  =  ( log `  A ) )
7810, 35, 773eqtr3a 2680 1  |-  ( A  e.  NN  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime ) ( ( p  pCnt  A )  x.  ( log `  p ) )  =  ( log `  A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   ifcif 4086    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326    seqcseq 12801   ^cexp 12860   sum_csu 14416   Primecprime 15385    pCnt cpc 15541   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  vmasum  24941  chebbnd1lem1  25158
  Copyright terms: Public domain W3C validator