Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1ex Structured version   Visualization version   Unicode version

Theorem proot1ex 37779
Description: The complex field has primitive  N-th roots of unity for all  N. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
proot1ex.g  |-  G  =  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )
proot1ex.o  |-  O  =  ( od `  G
)
Assertion
Ref Expression
proot1ex  |-  ( N  e.  NN  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  ( `' O " { N } ) )

Proof of Theorem proot1ex
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 neg1cn 11124 . . . 4  |-  -u 1  e.  CC
2 2rp 11837 . . . . . 6  |-  2  e.  RR+
3 nnrp 11842 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR+ )
4 rpdivcl 11856 . . . . . 6  |-  ( ( 2  e.  RR+  /\  N  e.  RR+ )  ->  (
2  /  N )  e.  RR+ )
52, 3, 4sylancr 695 . . . . 5  |-  ( N  e.  NN  ->  (
2  /  N )  e.  RR+ )
65rpcnd 11874 . . . 4  |-  ( N  e.  NN  ->  (
2  /  N )  e.  CC )
7 cxpcl 24420 . . . 4  |-  ( (
-u 1  e.  CC  /\  ( 2  /  N
)  e.  CC )  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
81, 6, 7sylancr 695 . . 3  |-  ( N  e.  NN  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
91a1i 11 . . . 4  |-  ( N  e.  NN  ->  -u 1  e.  CC )
10 neg1ne0 11126 . . . . 5  |-  -u 1  =/=  0
1110a1i 11 . . . 4  |-  ( N  e.  NN  ->  -u 1  =/=  0 )
129, 11, 6cxpne0d 24459 . . 3  |-  ( N  e.  NN  ->  ( -u 1  ^c  ( 2  /  N ) )  =/=  0 )
13 eldifsn 4317 . . 3  |-  ( (
-u 1  ^c 
( 2  /  N
) )  e.  ( CC  \  { 0 } )  <->  ( ( -u 1  ^c  ( 2  /  N ) )  e.  CC  /\  ( -u 1  ^c 
( 2  /  N
) )  =/=  0
) )
148, 12, 13sylanbrc 698 . 2  |-  ( N  e.  NN  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  ( CC 
\  { 0 } ) )
151a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  -u 1  e.  CC )
1610a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  -u 1  =/=  0 )
17 nn0cn 11302 . . . . . . . . . 10  |-  ( x  e.  NN0  ->  x  e.  CC )
18 mulcl 10020 . . . . . . . . . 10  |-  ( ( ( 2  /  N
)  e.  CC  /\  x  e.  CC )  ->  ( ( 2  /  N )  x.  x
)  e.  CC )
196, 17, 18syl2an 494 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( 2  /  N )  x.  x
)  e.  CC )
2015, 16, 19cxpefd 24458 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( -u 1  ^c 
( ( 2  /  N )  x.  x
) )  =  ( exp `  ( ( ( 2  /  N
)  x.  x )  x.  ( log `  -u 1
) ) ) )
2120eqeq1d 2624 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( -u 1  ^c  ( (
2  /  N )  x.  x ) )  =  1  <->  ( exp `  ( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1 ) ) )  =  1 ) )
22 logcl 24315 . . . . . . . . . 10  |-  ( (
-u 1  e.  CC  /\  -u 1  =/=  0
)  ->  ( log `  -u 1 )  e.  CC )
231, 10, 22mp2an 708 . . . . . . . . 9  |-  ( log `  -u 1 )  e.  CC
24 mulcl 10020 . . . . . . . . 9  |-  ( ( ( ( 2  /  N )  x.  x
)  e.  CC  /\  ( log `  -u 1
)  e.  CC )  ->  ( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1
) )  e.  CC )
2519, 23, 24sylancl 694 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1 ) )  e.  CC )
26 efeq1 24275 . . . . . . . 8  |-  ( ( ( ( 2  /  N )  x.  x
)  x.  ( log `  -u 1 ) )  e.  CC  ->  (
( exp `  (
( ( 2  /  N )  x.  x
)  x.  ( log `  -u 1 ) ) )  =  1  <->  (
( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1 ) )  /  ( _i  x.  ( 2  x.  pi ) ) )  e.  ZZ ) )
2725, 26syl 17 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( exp `  (
( ( 2  /  N )  x.  x
)  x.  ( log `  -u 1 ) ) )  =  1  <->  (
( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1 ) )  /  ( _i  x.  ( 2  x.  pi ) ) )  e.  ZZ ) )
28 2cn 11091 . . . . . . . . . . . . . 14  |-  2  e.  CC
2928a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
2  e.  CC )
30 nncn 11028 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  CC )
3130adantr 481 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  N  e.  CC )
3217adantl 482 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  x  e.  CC )
33 nnne0 11053 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  =/=  0 )
3433adantr 481 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  N  =/=  0 )
3529, 31, 32, 34div13d 10825 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( 2  /  N )  x.  x
)  =  ( ( x  /  N )  x.  2 ) )
36 logm1 24335 . . . . . . . . . . . . 13  |-  ( log `  -u 1 )  =  ( _i  x.  pi )
3736a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( log `  -u 1
)  =  ( _i  x.  pi ) )
3835, 37oveq12d 6668 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1 ) )  =  ( ( ( x  /  N )  x.  2 )  x.  ( _i  x.  pi ) ) )
3932, 31, 34divcld 10801 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( x  /  N
)  e.  CC )
40 ax-icn 9995 . . . . . . . . . . . . . 14  |-  _i  e.  CC
41 picn 24211 . . . . . . . . . . . . . 14  |-  pi  e.  CC
4240, 41mulcli 10045 . . . . . . . . . . . . 13  |-  ( _i  x.  pi )  e.  CC
4342a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( _i  x.  pi )  e.  CC )
4439, 29, 43mulassd 10063 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( x  /  N )  x.  2 )  x.  (
_i  x.  pi )
)  =  ( ( x  /  N )  x.  ( 2  x.  ( _i  x.  pi ) ) ) )
4540a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  _i  e.  CC )
4641a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  pi  e.  CC )
4729, 45, 46mul12d 10245 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( 2  x.  (
_i  x.  pi )
)  =  ( _i  x.  ( 2  x.  pi ) ) )
4847oveq2d 6666 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( x  /  N )  x.  (
2  x.  ( _i  x.  pi ) ) )  =  ( ( x  /  N )  x.  ( _i  x.  ( 2  x.  pi ) ) ) )
4938, 44, 483eqtrd 2660 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1 ) )  =  ( ( x  /  N )  x.  ( _i  x.  (
2  x.  pi ) ) ) )
5049oveq1d 6665 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1
) )  /  (
_i  x.  ( 2  x.  pi ) ) )  =  ( ( ( x  /  N
)  x.  ( _i  x.  ( 2  x.  pi ) ) )  /  ( _i  x.  ( 2  x.  pi ) ) ) )
5128, 41mulcli 10045 . . . . . . . . . . . 12  |-  ( 2  x.  pi )  e.  CC
5240, 51mulcli 10045 . . . . . . . . . . 11  |-  ( _i  x.  ( 2  x.  pi ) )  e.  CC
5352a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( _i  x.  (
2  x.  pi ) )  e.  CC )
54 ine0 10465 . . . . . . . . . . . 12  |-  _i  =/=  0
55 2ne0 11113 . . . . . . . . . . . . 13  |-  2  =/=  0
56 pire 24210 . . . . . . . . . . . . . 14  |-  pi  e.  RR
57 pipos 24212 . . . . . . . . . . . . . 14  |-  0  <  pi
5856, 57gt0ne0ii 10564 . . . . . . . . . . . . 13  |-  pi  =/=  0
5928, 41, 55, 58mulne0i 10670 . . . . . . . . . . . 12  |-  ( 2  x.  pi )  =/=  0
6040, 51, 54, 59mulne0i 10670 . . . . . . . . . . 11  |-  ( _i  x.  ( 2  x.  pi ) )  =/=  0
6160a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( _i  x.  (
2  x.  pi ) )  =/=  0 )
6239, 53, 61divcan4d 10807 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( x  /  N )  x.  ( _i  x.  (
2  x.  pi ) ) )  /  (
_i  x.  ( 2  x.  pi ) ) )  =  ( x  /  N ) )
6350, 62eqtrd 2656 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1
) )  /  (
_i  x.  ( 2  x.  pi ) ) )  =  ( x  /  N ) )
6463eleq1d 2686 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( ( ( 2  /  N
)  x.  x )  x.  ( log `  -u 1
) )  /  (
_i  x.  ( 2  x.  pi ) ) )  e.  ZZ  <->  ( x  /  N )  e.  ZZ ) )
6521, 27, 643bitrd 294 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( -u 1  ^c  ( (
2  /  N )  x.  x ) )  =  1  <->  ( x  /  N )  e.  ZZ ) )
666adantr 481 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( 2  /  N
)  e.  CC )
67 simpr 477 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  x  e.  NN0 )
6815, 66, 67cxpmul2d 24455 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( -u 1  ^c 
( ( 2  /  N )  x.  x
) )  =  ( ( -u 1  ^c  ( 2  /  N ) ) ^
x ) )
69 cnfldexp 19779 . . . . . . . . 9  |-  ( ( ( -u 1  ^c  ( 2  /  N ) )  e.  CC  /\  x  e. 
NN0 )  ->  (
x (.g `  (mulGrp ` fld ) ) ( -u
1  ^c  ( 2  /  N ) ) )  =  ( ( -u 1  ^c  ( 2  /  N ) ) ^
x ) )
708, 69sylan 488 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( x (.g `  (mulGrp ` fld ) ) ( -u 1  ^c  ( 2  /  N ) ) )  =  ( (
-u 1  ^c 
( 2  /  N
) ) ^ x
) )
71 cnring 19768 . . . . . . . . . 10  |-fld  e.  Ring
72 cnfldbas 19750 . . . . . . . . . . . 12  |-  CC  =  ( Base ` fld )
73 cnfld0 19770 . . . . . . . . . . . 12  |-  0  =  ( 0g ` fld )
74 cndrng 19775 . . . . . . . . . . . 12  |-fld  e.  DivRing
7572, 73, 74drngui 18753 . . . . . . . . . . 11  |-  ( CC 
\  { 0 } )  =  (Unit ` fld )
76 eqid 2622 . . . . . . . . . . 11  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
7775, 76unitsubm 18670 . . . . . . . . . 10  |-  (fld  e.  Ring  -> 
( CC  \  {
0 } )  e.  (SubMnd `  (mulGrp ` fld ) ) )
7871, 77mp1i 13 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( CC  \  {
0 } )  e.  (SubMnd `  (mulGrp ` fld ) ) )
7914adantr 481 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( -u 1  ^c 
( 2  /  N
) )  e.  ( CC  \  { 0 } ) )
80 eqid 2622 . . . . . . . . . 10  |-  (.g `  (mulGrp ` fld ) )  =  (.g `  (mulGrp ` fld ) )
81 proot1ex.g . . . . . . . . . 10  |-  G  =  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )
82 eqid 2622 . . . . . . . . . 10  |-  (.g `  G
)  =  (.g `  G
)
8380, 81, 82submmulg 17586 . . . . . . . . 9  |-  ( ( ( CC  \  {
0 } )  e.  (SubMnd `  (mulGrp ` fld ) )  /\  x  e.  NN0  /\  ( -u
1  ^c  ( 2  /  N ) )  e.  ( CC 
\  { 0 } ) )  ->  (
x (.g `  (mulGrp ` fld ) ) ( -u
1  ^c  ( 2  /  N ) ) )  =  ( x (.g `  G ) (
-u 1  ^c 
( 2  /  N
) ) ) )
8478, 67, 79, 83syl3anc 1326 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( x (.g `  (mulGrp ` fld ) ) ( -u 1  ^c  ( 2  /  N ) ) )  =  ( x (.g `  G ) (
-u 1  ^c 
( 2  /  N
) ) ) )
8568, 70, 843eqtr2rd 2663 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( x (.g `  G
) ( -u 1  ^c  ( 2  /  N ) ) )  =  ( -u
1  ^c  ( ( 2  /  N
)  x.  x ) ) )
8685eqeq1d 2624 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( x (.g `  G ) ( -u
1  ^c  ( 2  /  N ) ) )  =  1  <-> 
( -u 1  ^c 
( ( 2  /  N )  x.  x
) )  =  1 ) )
87 nnz 11399 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ZZ )
8887adantr 481 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  N  e.  ZZ )
89 nn0z 11400 . . . . . . . 8  |-  ( x  e.  NN0  ->  x  e.  ZZ )
9089adantl 482 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  x  e.  ZZ )
91 dvdsval2 14986 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  x  e.  ZZ )  ->  ( N  ||  x  <->  ( x  /  N )  e.  ZZ ) )
9288, 34, 90, 91syl3anc 1326 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( N  ||  x  <->  ( x  /  N )  e.  ZZ ) )
9365, 86, 923bitr4rd 301 . . . . 5  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( N  ||  x  <->  ( x (.g `  G ) (
-u 1  ^c 
( 2  /  N
) ) )  =  1 ) )
9493ralrimiva 2966 . . . 4  |-  ( N  e.  NN  ->  A. x  e.  NN0  ( N  ||  x 
<->  ( x (.g `  G
) ( -u 1  ^c  ( 2  /  N ) ) )  =  1 ) )
9575, 81unitgrp 18667 . . . . . 6  |-  (fld  e.  Ring  ->  G  e.  Grp )
9671, 95mp1i 13 . . . . 5  |-  ( N  e.  NN  ->  G  e.  Grp )
97 nnnn0 11299 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
9875, 81unitgrpbas 18666 . . . . . 6  |-  ( CC 
\  { 0 } )  =  ( Base `  G )
99 proot1ex.o . . . . . 6  |-  O  =  ( od `  G
)
100 cnfld1 19771 . . . . . . . 8  |-  1  =  ( 1r ` fld )
10175, 81, 100unitgrpid 18669 . . . . . . 7  |-  (fld  e.  Ring  -> 
1  =  ( 0g
`  G ) )
10271, 101ax-mp 5 . . . . . 6  |-  1  =  ( 0g `  G )
10398, 99, 82, 102odeq 17969 . . . . 5  |-  ( ( G  e.  Grp  /\  ( -u 1  ^c 
( 2  /  N
) )  e.  ( CC  \  { 0 } )  /\  N  e.  NN0 )  ->  ( N  =  ( O `  ( -u 1  ^c  ( 2  /  N ) ) )  <->  A. x  e.  NN0  ( N  ||  x  <->  ( x
(.g `  G ) (
-u 1  ^c 
( 2  /  N
) ) )  =  1 ) ) )
10496, 14, 97, 103syl3anc 1326 . . . 4  |-  ( N  e.  NN  ->  ( N  =  ( O `  ( -u 1  ^c  ( 2  /  N ) ) )  <->  A. x  e.  NN0  ( N  ||  x  <->  ( x
(.g `  G ) (
-u 1  ^c 
( 2  /  N
) ) )  =  1 ) ) )
10594, 104mpbird 247 . . 3  |-  ( N  e.  NN  ->  N  =  ( O `  ( -u 1  ^c 
( 2  /  N
) ) ) )
106105eqcomd 2628 . 2  |-  ( N  e.  NN  ->  ( O `  ( -u 1  ^c  ( 2  /  N ) ) )  =  N )
10798, 99odf 17956 . . . 4  |-  O :
( CC  \  {
0 } ) --> NN0
108 ffn 6045 . . . 4  |-  ( O : ( CC  \  { 0 } ) --> NN0  ->  O  Fn  ( CC  \  { 0 } ) )
109107, 108ax-mp 5 . . 3  |-  O  Fn  ( CC  \  { 0 } )
110 fniniseg 6338 . . 3  |-  ( O  Fn  ( CC  \  { 0 } )  ->  ( ( -u
1  ^c  ( 2  /  N ) )  e.  ( `' O " { N } )  <->  ( ( -u 1  ^c  ( 2  /  N ) )  e.  ( CC 
\  { 0 } )  /\  ( O `
 ( -u 1  ^c  ( 2  /  N ) ) )  =  N ) ) )
111109, 110mp1i 13 . 2  |-  ( N  e.  NN  ->  (
( -u 1  ^c 
( 2  /  N
) )  e.  ( `' O " { N } )  <->  ( ( -u 1  ^c  ( 2  /  N ) )  e.  ( CC 
\  { 0 } )  /\  ( O `
 ( -u 1  ^c  ( 2  /  N ) ) )  =  N ) ) )
11214, 106, 111mpbir2and 957 1  |-  ( N  e.  NN  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  ( `' O " { N } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571   {csn 4177   class class class wbr 4653   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937   _ici 9938    x. cmul 9941   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   RR+crp 11832   ^cexp 12860   expce 14792   picpi 14797    || cdvds 14983   ↾s cress 15858   0gc0g 16100  SubMndcsubmnd 17334   Grpcgrp 17422  .gcmg 17540   odcod 17944  mulGrpcmgp 18489   Ringcrg 18547  ℂfldccnfld 19746   logclog 24301    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-cntz 17750  df-od 17948  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator