MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem5 Structured version   Visualization version   Unicode version

Theorem emcllem5 24726
Description: Lemma for emcl 24729. The partial sums of the series  T, which is used in the definition df-em 24719, is in fact the same as  G. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1  |-  F  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  n ) ) )
emcl.2  |-  G  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  ( n  +  1 ) ) ) )
emcl.3  |-  H  =  ( n  e.  NN  |->  ( log `  ( 1  +  ( 1  /  n ) ) ) )
emcl.4  |-  T  =  ( n  e.  NN  |->  ( ( 1  /  n )  -  ( log `  ( 1  +  ( 1  /  n
) ) ) ) )
Assertion
Ref Expression
emcllem5  |-  G  =  seq 1 (  +  ,  T )
Distinct variable groups:    m, H    m, n, T
Allowed substitution hints:    F( m, n)    G( m, n)    H( n)

Proof of Theorem emcllem5
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elfznn 12370 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 ... n )  ->  m  e.  NN )
21adantl 482 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  m  e.  NN )
32nncnd 11036 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  m  e.  CC )
4 1cnd 10056 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  1  e.  CC )
52nnne0d 11065 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  m  =/=  0
)
63, 4, 3, 5divdird 10839 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( ( m  +  1 )  /  m )  =  ( ( m  /  m
)  +  ( 1  /  m ) ) )
73, 5dividd 10799 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( m  /  m )  =  1 )
87oveq1d 6665 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( ( m  /  m )  +  ( 1  /  m
) )  =  ( 1  +  ( 1  /  m ) ) )
96, 8eqtrd 2656 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( ( m  +  1 )  /  m )  =  ( 1  +  ( 1  /  m ) ) )
109fveq2d 6195 . . . . . . . 8  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( log `  (
( m  +  1 )  /  m ) )  =  ( log `  ( 1  +  ( 1  /  m ) ) ) )
11 peano2nn 11032 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  NN )
122, 11syl 17 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( m  + 
1 )  e.  NN )
1312nnrpd 11870 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( m  + 
1 )  e.  RR+ )
142nnrpd 11870 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  m  e.  RR+ )
1513, 14relogdivd 24372 . . . . . . . 8  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( log `  (
( m  +  1 )  /  m ) )  =  ( ( log `  ( m  +  1 ) )  -  ( log `  m
) ) )
1610, 15eqtr3d 2658 . . . . . . 7  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( log `  (
1  +  ( 1  /  m ) ) )  =  ( ( log `  ( m  +  1 ) )  -  ( log `  m
) ) )
1716sumeq2dv 14433 . . . . . 6  |-  ( n  e.  NN  ->  sum_ m  e.  ( 1 ... n
) ( log `  (
1  +  ( 1  /  m ) ) )  =  sum_ m  e.  ( 1 ... n
) ( ( log `  ( m  +  1 ) )  -  ( log `  m ) ) )
18 fveq2 6191 . . . . . . 7  |-  ( x  =  m  ->  ( log `  x )  =  ( log `  m
) )
19 fveq2 6191 . . . . . . 7  |-  ( x  =  ( m  + 
1 )  ->  ( log `  x )  =  ( log `  (
m  +  1 ) ) )
20 fveq2 6191 . . . . . . 7  |-  ( x  =  1  ->  ( log `  x )  =  ( log `  1
) )
21 fveq2 6191 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  ( log `  x )  =  ( log `  (
n  +  1 ) ) )
22 nnz 11399 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  ZZ )
23 peano2nn 11032 . . . . . . . 8  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
24 nnuz 11723 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2523, 24syl6eleq 2711 . . . . . . 7  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  ( ZZ>= `  1
) )
26 elfznn 12370 . . . . . . . . . . 11  |-  ( x  e.  ( 1 ... ( n  +  1 ) )  ->  x  e.  NN )
2726adantl 482 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  x  e.  ( 1 ... ( n  + 
1 ) ) )  ->  x  e.  NN )
2827nnrpd 11870 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  x  e.  ( 1 ... ( n  + 
1 ) ) )  ->  x  e.  RR+ )
2928relogcld 24369 . . . . . . . 8  |-  ( ( n  e.  NN  /\  x  e.  ( 1 ... ( n  + 
1 ) ) )  ->  ( log `  x
)  e.  RR )
3029recnd 10068 . . . . . . 7  |-  ( ( n  e.  NN  /\  x  e.  ( 1 ... ( n  + 
1 ) ) )  ->  ( log `  x
)  e.  CC )
3118, 19, 20, 21, 22, 25, 30telfsum2 14537 . . . . . 6  |-  ( n  e.  NN  ->  sum_ m  e.  ( 1 ... n
) ( ( log `  ( m  +  1 ) )  -  ( log `  m ) )  =  ( ( log `  ( n  +  1 ) )  -  ( log `  1 ) ) )
32 log1 24332 . . . . . . . 8  |-  ( log `  1 )  =  0
3332oveq2i 6661 . . . . . . 7  |-  ( ( log `  ( n  +  1 ) )  -  ( log `  1
) )  =  ( ( log `  (
n  +  1 ) )  -  0 )
3423nnrpd 11870 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  RR+ )
3534relogcld 24369 . . . . . . . . 9  |-  ( n  e.  NN  ->  ( log `  ( n  + 
1 ) )  e.  RR )
3635recnd 10068 . . . . . . . 8  |-  ( n  e.  NN  ->  ( log `  ( n  + 
1 ) )  e.  CC )
3736subid1d 10381 . . . . . . 7  |-  ( n  e.  NN  ->  (
( log `  (
n  +  1 ) )  -  0 )  =  ( log `  (
n  +  1 ) ) )
3833, 37syl5eq 2668 . . . . . 6  |-  ( n  e.  NN  ->  (
( log `  (
n  +  1 ) )  -  ( log `  1 ) )  =  ( log `  (
n  +  1 ) ) )
3917, 31, 383eqtrd 2660 . . . . 5  |-  ( n  e.  NN  ->  sum_ m  e.  ( 1 ... n
) ( log `  (
1  +  ( 1  /  m ) ) )  =  ( log `  ( n  +  1 ) ) )
4039oveq2d 6666 . . . 4  |-  ( n  e.  NN  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  sum_ m  e.  ( 1 ... n ) ( log `  (
1  +  ( 1  /  m ) ) ) )  =  (
sum_ m  e.  (
1 ... n ) ( 1  /  m )  -  ( log `  (
n  +  1 ) ) ) )
41 fzfid 12772 . . . . . 6  |-  ( n  e.  NN  ->  (
1 ... n )  e. 
Fin )
422nnrecred 11066 . . . . . . 7  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( 1  /  m )  e.  RR )
4342recnd 10068 . . . . . 6  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( 1  /  m )  e.  CC )
44 1rp 11836 . . . . . . . . 9  |-  1  e.  RR+
4514rpreccld 11882 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( 1  /  m )  e.  RR+ )
46 rpaddcl 11854 . . . . . . . . 9  |-  ( ( 1  e.  RR+  /\  (
1  /  m )  e.  RR+ )  ->  (
1  +  ( 1  /  m ) )  e.  RR+ )
4744, 45, 46sylancr 695 . . . . . . . 8  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( 1  +  ( 1  /  m
) )  e.  RR+ )
4847relogcld 24369 . . . . . . 7  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( log `  (
1  +  ( 1  /  m ) ) )  e.  RR )
4948recnd 10068 . . . . . 6  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( log `  (
1  +  ( 1  /  m ) ) )  e.  CC )
5041, 43, 49fsumsub 14520 . . . . 5  |-  ( n  e.  NN  ->  sum_ m  e.  ( 1 ... n
) ( ( 1  /  m )  -  ( log `  ( 1  +  ( 1  /  m ) ) ) )  =  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  sum_ m  e.  ( 1 ... n ) ( log `  ( 1  +  ( 1  /  m ) ) ) ) )
51 oveq2 6658 . . . . . . . . 9  |-  ( n  =  m  ->  (
1  /  n )  =  ( 1  /  m ) )
5251oveq2d 6666 . . . . . . . . . 10  |-  ( n  =  m  ->  (
1  +  ( 1  /  n ) )  =  ( 1  +  ( 1  /  m
) ) )
5352fveq2d 6195 . . . . . . . . 9  |-  ( n  =  m  ->  ( log `  ( 1  +  ( 1  /  n
) ) )  =  ( log `  (
1  +  ( 1  /  m ) ) ) )
5451, 53oveq12d 6668 . . . . . . . 8  |-  ( n  =  m  ->  (
( 1  /  n
)  -  ( log `  ( 1  +  ( 1  /  n ) ) ) )  =  ( ( 1  /  m )  -  ( log `  ( 1  +  ( 1  /  m
) ) ) ) )
55 emcl.4 . . . . . . . 8  |-  T  =  ( n  e.  NN  |->  ( ( 1  /  n )  -  ( log `  ( 1  +  ( 1  /  n
) ) ) ) )
56 ovex 6678 . . . . . . . 8  |-  ( ( 1  /  m )  -  ( log `  (
1  +  ( 1  /  m ) ) ) )  e.  _V
5754, 55, 56fvmpt 6282 . . . . . . 7  |-  ( m  e.  NN  ->  ( T `  m )  =  ( ( 1  /  m )  -  ( log `  ( 1  +  ( 1  /  m ) ) ) ) )
582, 57syl 17 . . . . . 6  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( T `  m )  =  ( ( 1  /  m
)  -  ( log `  ( 1  +  ( 1  /  m ) ) ) ) )
59 id 22 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  NN )
6059, 24syl6eleq 2711 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  ( ZZ>= `  1 )
)
6142, 48resubcld 10458 . . . . . . 7  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( ( 1  /  m )  -  ( log `  ( 1  +  ( 1  /  m ) ) ) )  e.  RR )
6261recnd 10068 . . . . . 6  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( ( 1  /  m )  -  ( log `  ( 1  +  ( 1  /  m ) ) ) )  e.  CC )
6358, 60, 62fsumser 14461 . . . . 5  |-  ( n  e.  NN  ->  sum_ m  e.  ( 1 ... n
) ( ( 1  /  m )  -  ( log `  ( 1  +  ( 1  /  m ) ) ) )  =  (  seq 1 (  +  ,  T ) `  n
) )
6450, 63eqtr3d 2658 . . . 4  |-  ( n  e.  NN  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  sum_ m  e.  ( 1 ... n ) ( log `  (
1  +  ( 1  /  m ) ) ) )  =  (  seq 1 (  +  ,  T ) `  n ) )
6540, 64eqtr3d 2658 . . 3  |-  ( n  e.  NN  ->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  (
n  +  1 ) ) )  =  (  seq 1 (  +  ,  T ) `  n ) )
6665mpteq2ia 4740 . 2  |-  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m )  -  ( log `  ( n  +  1 ) ) ) )  =  ( n  e.  NN  |->  (  seq 1 (  +  ,  T ) `  n ) )
67 emcl.2 . 2  |-  G  =  ( n  e.  NN  |->  ( sum_ m  e.  ( 1 ... n ) ( 1  /  m
)  -  ( log `  ( n  +  1 ) ) ) )
68 1z 11407 . . . . 5  |-  1  e.  ZZ
69 seqfn 12813 . . . . 5  |-  ( 1  e.  ZZ  ->  seq 1 (  +  ,  T )  Fn  ( ZZ>=
`  1 ) )
7068, 69ax-mp 5 . . . 4  |-  seq 1
(  +  ,  T
)  Fn  ( ZZ>= ` 
1 )
7124fneq2i 5986 . . . 4  |-  (  seq 1 (  +  ,  T )  Fn  NN  <->  seq 1 (  +  ,  T )  Fn  ( ZZ>=
`  1 ) )
7270, 71mpbir 221 . . 3  |-  seq 1
(  +  ,  T
)  Fn  NN
73 dffn5 6241 . . 3  |-  (  seq 1 (  +  ,  T )  Fn  NN  <->  seq 1 (  +  ,  T )  =  ( n  e.  NN  |->  (  seq 1 (  +  ,  T ) `  n ) ) )
7472, 73mpbi 220 . 2  |-  seq 1
(  +  ,  T
)  =  ( n  e.  NN  |->  (  seq 1 (  +  ,  T ) `  n
) )
7566, 67, 743eqtr4i 2654 1  |-  G  =  seq 1 (  +  ,  T )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990    |-> cmpt 4729    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326    seqcseq 12801   sum_csu 14416   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  emcllem6  24727
  Copyright terms: Public domain W3C validator