MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgm Structured version   Visualization version   Unicode version

Theorem amgm 24717
Description: Inequality of arithmetic and geometric means. Here  ( M  gsumg  F ) calculates the group sum within the multiplicative monoid of the complex numbers (or in other words, it multiplies the elements  F ( x ) ,  x  e.  A together), and  (fld 
gsumg  F ) calculates the group sum in the additive group (i.e. the sum of the elements). This is Metamath 100 proof #38. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
amgm.1  |-  M  =  (mulGrp ` fld )
Assertion
Ref Expression
amgm  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,) +oo ) )  ->  (
( M  gsumg  F )  ^c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) )

Proof of Theorem amgm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgm.1 . . . . . . . . 9  |-  M  =  (mulGrp ` fld )
2 cnfldbas 19750 . . . . . . . . 9  |-  CC  =  ( Base ` fld )
31, 2mgpbas 18495 . . . . . . . 8  |-  CC  =  ( Base `  M )
4 cnfld1 19771 . . . . . . . . 9  |-  1  =  ( 1r ` fld )
51, 4ringidval 18503 . . . . . . . 8  |-  1  =  ( 0g `  M )
6 cnfldmul 19752 . . . . . . . . 9  |-  x.  =  ( .r ` fld )
71, 6mgpplusg 18493 . . . . . . . 8  |-  x.  =  ( +g  `  M )
8 cncrng 19767 . . . . . . . . 9  |-fld  e.  CRing
91crngmgp 18555 . . . . . . . . 9  |-  (fld  e.  CRing  ->  M  e. CMnd )
108, 9mp1i 13 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  M  e. CMnd )
11 simpl1 1064 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  A  e.  Fin )
12 simpl3 1066 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  F : A --> ( 0 [,) +oo ) )
13 rge0ssre 12280 . . . . . . . . . 10  |-  ( 0 [,) +oo )  C_  RR
14 ax-resscn 9993 . . . . . . . . . 10  |-  RR  C_  CC
1513, 14sstri 3612 . . . . . . . . 9  |-  ( 0 [,) +oo )  C_  CC
16 fss 6056 . . . . . . . . 9  |-  ( ( F : A --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  CC )  ->  F : A --> CC )
1712, 15, 16sylancl 694 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  F : A --> CC )
18 1ex 10035 . . . . . . . . . 10  |-  1  e.  _V
1918a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  1  e.  _V )
2017, 11, 19fdmfifsupp 8285 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  F finSupp  1 )
21 disjdif 4040 . . . . . . . . 9  |-  ( { x }  i^i  ( A  \  { x }
) )  =  (/)
2221a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( { x }  i^i  ( A  \  { x } ) )  =  (/) )
23 undif2 4044 . . . . . . . . 9  |-  ( { x }  u.  ( A  \  { x }
) )  =  ( { x }  u.  A )
24 simprl 794 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  x  e.  A
)
2524snssd 4340 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  { x }  C_  A )
26 ssequn1 3783 . . . . . . . . . 10  |-  ( { x }  C_  A  <->  ( { x }  u.  A )  =  A )
2725, 26sylib 208 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( { x }  u.  A )  =  A )
2823, 27syl5req 2669 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  A  =  ( { x }  u.  ( A  \  { x } ) ) )
293, 5, 7, 10, 11, 17, 20, 22, 28gsumsplit 18328 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( M  gsumg  F )  =  ( ( M 
gsumg  ( F  |`  { x } ) )  x.  ( M  gsumg  ( F  |`  ( A  \  { x }
) ) ) ) )
3012, 25feqresmpt 6250 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( F  |`  { x } )  =  ( y  e. 
{ x }  |->  ( F `  y ) ) )
3130oveq2d 6666 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( M  gsumg  ( F  |`  { x } ) )  =  ( M 
gsumg  ( y  e.  {
x }  |->  ( F `
 y ) ) ) )
32 cnring 19768 . . . . . . . . . . 11  |-fld  e.  Ring
331ringmgp 18553 . . . . . . . . . . 11  |-  (fld  e.  Ring  ->  M  e.  Mnd )
3432, 33mp1i 13 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  M  e.  Mnd )
3517, 24ffvelrnd 6360 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( F `  x )  e.  CC )
36 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
373, 36gsumsn 18354 . . . . . . . . . 10  |-  ( ( M  e.  Mnd  /\  x  e.  A  /\  ( F `  x )  e.  CC )  -> 
( M  gsumg  ( y  e.  {
x }  |->  ( F `
 y ) ) )  =  ( F `
 x ) )
3834, 24, 35, 37syl3anc 1326 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( M  gsumg  ( y  e.  { x }  |->  ( F `  y
) ) )  =  ( F `  x
) )
39 simprr 796 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( F `  x )  =  0 )
4031, 38, 393eqtrd 2660 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( M  gsumg  ( F  |`  { x } ) )  =  0 )
4140oveq1d 6665 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( ( M 
gsumg  ( F  |`  { x } ) )  x.  ( M  gsumg  ( F  |`  ( A  \  { x }
) ) ) )  =  ( 0  x.  ( M  gsumg  ( F  |`  ( A  \  { x }
) ) ) ) )
42 diffi 8192 . . . . . . . . . 10  |-  ( A  e.  Fin  ->  ( A  \  { x }
)  e.  Fin )
4311, 42syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( A  \  { x } )  e.  Fin )
44 difss 3737 . . . . . . . . . 10  |-  ( A 
\  { x }
)  C_  A
45 fssres 6070 . . . . . . . . . 10  |-  ( ( F : A --> CC  /\  ( A  \  { x } )  C_  A
)  ->  ( F  |`  ( A  \  {
x } ) ) : ( A  \  { x } ) --> CC )
4617, 44, 45sylancl 694 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( F  |`  ( A  \  { x } ) ) : ( A  \  {
x } ) --> CC )
4746, 43, 19fdmfifsupp 8285 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( F  |`  ( A  \  { x } ) ) finSupp  1
)
483, 5, 10, 43, 46, 47gsumcl 18316 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( M  gsumg  ( F  |`  ( A  \  {
x } ) ) )  e.  CC )
4948mul02d 10234 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( 0  x.  ( M  gsumg  ( F  |`  ( A  \  { x }
) ) ) )  =  0 )
5029, 41, 493eqtrd 2660 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( M  gsumg  F )  =  0 )
5150oveq1d 6665 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( ( M 
gsumg  F )  ^c 
( 1  /  ( # `
 A ) ) )  =  ( 0  ^c  ( 1  /  ( # `  A
) ) ) )
52 simpl2 1065 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  A  =/=  (/) )
53 hashnncl 13157 . . . . . . . . . 10  |-  ( A  e.  Fin  ->  (
( # `  A )  e.  NN  <->  A  =/=  (/) ) )
5411, 53syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( ( # `  A )  e.  NN  <->  A  =/=  (/) ) )
5552, 54mpbird 247 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( # `  A
)  e.  NN )
5655nncnd 11036 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( # `  A
)  e.  CC )
5755nnne0d 11065 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( # `  A
)  =/=  0 )
5856, 57reccld 10794 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( 1  / 
( # `  A ) )  e.  CC )
5956, 57recne0d 10795 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( 1  / 
( # `  A ) )  =/=  0 )
6058, 590cxpd 24456 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( 0  ^c  ( 1  / 
( # `  A ) ) )  =  0 )
6151, 60eqtrd 2656 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( ( M 
gsumg  F )  ^c 
( 1  /  ( # `
 A ) ) )  =  0 )
62 cnfld0 19770 . . . . . . 7  |-  0  =  ( 0g ` fld )
63 ringcmn 18581 . . . . . . . 8  |-  (fld  e.  Ring  ->fld  e. CMnd )
6432, 63mp1i 13 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->fld 
e. CMnd )
65 rege0subm 19802 . . . . . . . 8  |-  ( 0 [,) +oo )  e.  (SubMnd ` fld )
6665a1i 11 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( 0 [,) +oo )  e.  (SubMnd ` fld ) )
67 c0ex 10034 . . . . . . . . 9  |-  0  e.  _V
6867a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  0  e.  _V )
6912, 11, 68fdmfifsupp 8285 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  F finSupp  0 )
7062, 64, 11, 66, 12, 69gsumsubmcl 18319 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  (fld 
gsumg  F )  e.  ( 0 [,) +oo )
)
71 elrege0 12278 . . . . . 6  |-  ( (fld  gsumg  F )  e.  ( 0 [,) +oo )  <->  ( (fld  gsumg  F )  e.  RR  /\  0  <_  (fld  gsumg  F ) ) )
7270, 71sylib 208 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( (fld  gsumg  F )  e.  RR  /\  0  <_  (fld  gsumg  F ) ) )
7355nnred 11035 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( # `  A
)  e.  RR )
7455nngt0d 11064 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  0  <  ( # `
 A ) )
75 divge0 10892 . . . . 5  |-  ( ( ( (fld 
gsumg  F )  e.  RR  /\  0  <_  (fld  gsumg  F ) )  /\  ( ( # `  A
)  e.  RR  /\  0  <  ( # `  A
) ) )  -> 
0  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) )
7672, 73, 74, 75syl12anc 1324 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  0  <_  (
(fld  gsumg  F )  /  ( # `  A ) ) )
7761, 76eqbrtrd 4675 . . 3  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  (
x  e.  A  /\  ( F `  x )  =  0 ) )  ->  ( ( M 
gsumg  F )  ^c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) )
7877rexlimdvaa 3032 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,) +oo ) )  ->  ( E. x  e.  A  ( F `  x )  =  0  ->  (
( M  gsumg  F )  ^c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) ) )
79 ralnex 2992 . . 3  |-  ( A. x  e.  A  -.  ( F `  x )  =  0  <->  -.  E. x  e.  A  ( F `  x )  =  0 )
80 simpl1 1064 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  A  e.  Fin )
81 simpl2 1065 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  A  =/=  (/) )
82 simpl3 1066 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  F : A --> ( 0 [,) +oo ) )
83 ffn 6045 . . . . . . 7  |-  ( F : A --> ( 0 [,) +oo )  ->  F  Fn  A )
8482, 83syl 17 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  F  Fn  A )
85 ffvelrn 6357 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> ( 0 [,) +oo )  /\  x  e.  A )  ->  ( F `  x
)  e.  ( 0 [,) +oo ) )
86853ad2antl3 1225 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  A )  ->  ( F `  x )  e.  ( 0 [,) +oo ) )
87 elrege0 12278 . . . . . . . . . . . . . . 15  |-  ( ( F `  x )  e.  ( 0 [,) +oo )  <->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
8886, 87sylib 208 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  A )  ->  (
( F `  x
)  e.  RR  /\  0  <_  ( F `  x ) ) )
8988simprd 479 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  A )  ->  0  <_  ( F `  x
) )
90 0re 10040 . . . . . . . . . . . . . 14  |-  0  e.  RR
9188simpld 475 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  A )  ->  ( F `  x )  e.  RR )
92 leloe 10124 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( F `  x )  e.  RR )  -> 
( 0  <_  ( F `  x )  <->  ( 0  <  ( F `
 x )  \/  0  =  ( F `
 x ) ) ) )
9390, 91, 92sylancr 695 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  A )  ->  (
0  <_  ( F `  x )  <->  ( 0  <  ( F `  x )  \/  0  =  ( F `  x ) ) ) )
9489, 93mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  A )  ->  (
0  <  ( F `  x )  \/  0  =  ( F `  x ) ) )
9594ord 392 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  A )  ->  ( -.  0  <  ( F `
 x )  -> 
0  =  ( F `
 x ) ) )
96 eqcom 2629 . . . . . . . . . . 11  |-  ( 0  =  ( F `  x )  <->  ( F `  x )  =  0 )
9795, 96syl6ib 241 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  A )  ->  ( -.  0  <  ( F `
 x )  -> 
( F `  x
)  =  0 ) )
9897con1d 139 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  A )  ->  ( -.  ( F `  x
)  =  0  -> 
0  <  ( F `  x ) ) )
99 elrp 11834 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  RR+  <->  ( ( F `
 x )  e.  RR  /\  0  < 
( F `  x
) ) )
10099baib 944 . . . . . . . . . 10  |-  ( ( F `  x )  e.  RR  ->  (
( F `  x
)  e.  RR+  <->  0  <  ( F `  x ) ) )
10191, 100syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  A )  ->  (
( F `  x
)  e.  RR+  <->  0  <  ( F `  x ) ) )
10298, 101sylibrd 249 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  A )  ->  ( -.  ( F `  x
)  =  0  -> 
( F `  x
)  e.  RR+ )
)
103102ralimdva 2962 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,) +oo ) )  ->  ( A. x  e.  A  -.  ( F `  x
)  =  0  ->  A. x  e.  A  ( F `  x )  e.  RR+ ) )
104103imp 445 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  A. x  e.  A  ( F `  x )  e.  RR+ )
105 ffnfv 6388 . . . . . 6  |-  ( F : A --> RR+  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  RR+ ) )
10684, 104, 105sylanbrc 698 . . . . 5  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  ->  F : A --> RR+ )
1071, 80, 81, 106amgmlem 24716 . . . 4  |-  ( ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A --> ( 0 [,) +oo ) )  /\  A. x  e.  A  -.  ( F `  x )  =  0 )  -> 
( ( M  gsumg  F )  ^c  ( 1  /  ( # `  A
) ) )  <_ 
( (fld 
gsumg  F )  /  ( # `
 A ) ) )
108107ex 450 . . 3  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,) +oo ) )  ->  ( A. x  e.  A  -.  ( F `  x
)  =  0  -> 
( ( M  gsumg  F )  ^c  ( 1  /  ( # `  A
) ) )  <_ 
( (fld 
gsumg  F )  /  ( # `
 A ) ) ) )
10979, 108syl5bir 233 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,) +oo ) )  ->  ( -.  E. x  e.  A  ( F `  x )  =  0  ->  (
( M  gsumg  F )  ^c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) ) )
11078, 109pm2.61d 170 1  |-  ( ( A  e.  Fin  /\  A  =/=  (/)  /\  F : A
--> ( 0 [,) +oo ) )  ->  (
( M  gsumg  F )  ^c 
( 1  /  ( # `
 A ) ) )  <_  ( (fld  gsumg  F )  /  ( # `
 A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   +oocpnf 10071    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   RR+crp 11832   [,)cico 12177   #chash 13117    gsumg cgsu 16101   Mndcmnd 17294  SubMndcsubmnd 17334  CMndccmn 18193  mulGrpcmgp 18489   Ringcrg 18547   CRingccrg 18548  ℂfldccnfld 19746    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-subrg 18778  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-refld 19951  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator