Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioolem1 Structured version   Visualization version   Unicode version

Theorem dvbdfbdioolem1 40143
Description: Given a function with bounded derivative, on an open interval, here is an absolute bound to the difference of the image of two points in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioolem1.a  |-  ( ph  ->  A  e.  RR )
dvbdfbdioolem1.b  |-  ( ph  ->  B  e.  RR )
dvbdfbdioolem1.f  |-  ( ph  ->  F : ( A (,) B ) --> RR )
dvbdfbdioolem1.dmdv  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
dvbdfbdioolem1.k  |-  ( ph  ->  K  e.  RR )
dvbdfbdioolem1.dvbd  |-  ( ph  ->  A. x  e.  ( A (,) B ) ( abs `  (
( RR  _D  F
) `  x )
)  <_  K )
dvbdfbdioolem1.c  |-  ( ph  ->  C  e.  ( A (,) B ) )
dvbdfbdioolem1.d  |-  ( ph  ->  D  e.  ( C (,) B ) )
Assertion
Ref Expression
dvbdfbdioolem1  |-  ( ph  ->  ( ( abs `  (
( F `  D
)  -  ( F `
 C ) ) )  <_  ( K  x.  ( D  -  C
) )  /\  ( abs `  ( ( F `
 D )  -  ( F `  C ) ) )  <_  ( K  x.  ( B  -  A ) ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D    x, F    x, K    ph, x

Proof of Theorem dvbdfbdioolem1
StepHypRef Expression
1 ioossre 12235 . . . 4  |-  ( A (,) B )  C_  RR
2 dvbdfbdioolem1.c . . . 4  |-  ( ph  ->  C  e.  ( A (,) B ) )
31, 2sseldi 3601 . . 3  |-  ( ph  ->  C  e.  RR )
4 ioossre 12235 . . . 4  |-  ( C (,) B )  C_  RR
5 dvbdfbdioolem1.d . . . 4  |-  ( ph  ->  D  e.  ( C (,) B ) )
64, 5sseldi 3601 . . 3  |-  ( ph  ->  D  e.  RR )
73rexrd 10089 . . . 4  |-  ( ph  ->  C  e.  RR* )
8 dvbdfbdioolem1.b . . . . 5  |-  ( ph  ->  B  e.  RR )
98rexrd 10089 . . . 4  |-  ( ph  ->  B  e.  RR* )
10 ioogtlb 39717 . . . 4  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  D  e.  ( C (,) B
) )  ->  C  <  D )
117, 9, 5, 10syl3anc 1326 . . 3  |-  ( ph  ->  C  <  D )
12 dvbdfbdioolem1.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
1312rexrd 10089 . . . . 5  |-  ( ph  ->  A  e.  RR* )
14 ioogtlb 39717 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  ( A (,) B
) )  ->  A  <  C )
1513, 9, 2, 14syl3anc 1326 . . . . 5  |-  ( ph  ->  A  <  C )
16 iooltub 39735 . . . . . 6  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  D  e.  ( C (,) B
) )  ->  D  <  B )
177, 9, 5, 16syl3anc 1326 . . . . 5  |-  ( ph  ->  D  <  B )
18 iccssioo 12242 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <  C  /\  D  <  B ) )  ->  ( C [,] D )  C_  ( A (,) B ) )
1913, 9, 15, 17, 18syl22anc 1327 . . . 4  |-  ( ph  ->  ( C [,] D
)  C_  ( A (,) B ) )
20 dvbdfbdioolem1.f . . . . 5  |-  ( ph  ->  F : ( A (,) B ) --> RR )
21 ax-resscn 9993 . . . . . . 7  |-  RR  C_  CC
2221a1i 11 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
2320, 22fssd 6057 . . . . . . 7  |-  ( ph  ->  F : ( A (,) B ) --> CC )
241a1i 11 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  RR )
25 dvbdfbdioolem1.dmdv . . . . . . 7  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
26 dvcn 23684 . . . . . . 7  |-  ( ( ( RR  C_  CC  /\  F : ( A (,) B ) --> CC 
/\  ( A (,) B )  C_  RR )  /\  dom  ( RR 
_D  F )  =  ( A (,) B
) )  ->  F  e.  ( ( A (,) B ) -cn-> CC ) )
2722, 23, 24, 25, 26syl31anc 1329 . . . . . 6  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
28 cncffvrn 22701 . . . . . 6  |-  ( ( RR  C_  CC  /\  F  e.  ( ( A (,) B ) -cn-> CC ) )  ->  ( F  e.  ( ( A (,) B ) -cn-> RR )  <-> 
F : ( A (,) B ) --> RR ) )
2922, 27, 28syl2anc 693 . . . . 5  |-  ( ph  ->  ( F  e.  ( ( A (,) B
) -cn-> RR )  <->  F :
( A (,) B
) --> RR ) )
3020, 29mpbird 247 . . . 4  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> RR ) )
31 rescncf 22700 . . . 4  |-  ( ( C [,] D ) 
C_  ( A (,) B )  ->  ( F  e.  ( ( A (,) B ) -cn-> RR )  ->  ( F  |`  ( C [,] D
) )  e.  ( ( C [,] D
) -cn-> RR ) ) )
3219, 30, 31sylc 65 . . 3  |-  ( ph  ->  ( F  |`  ( C [,] D ) )  e.  ( ( C [,] D ) -cn-> RR ) )
3319, 24sstrd 3613 . . . . . . 7  |-  ( ph  ->  ( C [,] D
)  C_  RR )
34 eqid 2622 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
3534tgioo2 22606 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
3634, 35dvres 23675 . . . . . . 7  |-  ( ( ( RR  C_  CC  /\  F : ( A (,) B ) --> CC )  /\  ( ( A (,) B ) 
C_  RR  /\  ( C [,] D )  C_  RR ) )  ->  ( RR  _D  ( F  |`  ( C [,] D ) ) )  =  ( ( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( C [,] D ) ) ) )
3722, 23, 24, 33, 36syl22anc 1327 . . . . . 6  |-  ( ph  ->  ( RR  _D  ( F  |`  ( C [,] D ) ) )  =  ( ( RR 
_D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( C [,] D ) ) ) )
38 iccntr 22624 . . . . . . . 8  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( C [,] D ) )  =  ( C (,) D
) )
393, 6, 38syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( C [,] D ) )  =  ( C (,) D
) )
4039reseq2d 5396 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( C [,] D ) ) )  =  ( ( RR 
_D  F )  |`  ( C (,) D ) ) )
4137, 40eqtrd 2656 . . . . 5  |-  ( ph  ->  ( RR  _D  ( F  |`  ( C [,] D ) ) )  =  ( ( RR 
_D  F )  |`  ( C (,) D ) ) )
4241dmeqd 5326 . . . 4  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( C [,] D ) ) )  =  dom  (
( RR  _D  F
)  |`  ( C (,) D ) ) )
4312, 3, 15ltled 10185 . . . . . . 7  |-  ( ph  ->  A  <_  C )
446, 8, 17ltled 10185 . . . . . . 7  |-  ( ph  ->  D  <_  B )
45 ioossioo 12265 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  C  /\  D  <_  B ) )  ->  ( C (,) D )  C_  ( A (,) B ) )
4613, 9, 43, 44, 45syl22anc 1327 . . . . . 6  |-  ( ph  ->  ( C (,) D
)  C_  ( A (,) B ) )
4746, 25sseqtr4d 3642 . . . . 5  |-  ( ph  ->  ( C (,) D
)  C_  dom  ( RR 
_D  F ) )
48 ssdmres 5420 . . . . 5  |-  ( ( C (,) D ) 
C_  dom  ( RR  _D  F )  <->  dom  ( ( RR  _D  F )  |`  ( C (,) D
) )  =  ( C (,) D ) )
4947, 48sylib 208 . . . 4  |-  ( ph  ->  dom  ( ( RR 
_D  F )  |`  ( C (,) D ) )  =  ( C (,) D ) )
5042, 49eqtrd 2656 . . 3  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( C [,] D ) ) )  =  ( C (,) D ) )
513, 6, 11, 32, 50mvth 23755 . 2  |-  ( ph  ->  E. x  e.  ( C (,) D ) ( ( RR  _D  ( F  |`  ( C [,] D ) ) ) `  x )  =  ( ( ( ( F  |`  ( C [,] D ) ) `
 D )  -  ( ( F  |`  ( C [,] D ) ) `  C ) )  /  ( D  -  C ) ) )
5241fveq1d 6193 . . . . . . . . 9  |-  ( ph  ->  ( ( RR  _D  ( F  |`  ( C [,] D ) ) ) `  x )  =  ( ( ( RR  _D  F )  |`  ( C (,) D
) ) `  x
) )
53 fvres 6207 . . . . . . . . 9  |-  ( x  e.  ( C (,) D )  ->  (
( ( RR  _D  F )  |`  ( C (,) D ) ) `
 x )  =  ( ( RR  _D  F ) `  x
) )
5452, 53sylan9eq 2676 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( ( RR  _D  ( F  |`  ( C [,] D ) ) ) `  x
)  =  ( ( RR  _D  F ) `
 x ) )
5554eqcomd 2628 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( ( RR  _D  F ) `  x )  =  ( ( RR  _D  ( F  |`  ( C [,] D ) ) ) `
 x ) )
56553adant3 1081 . . . . . 6  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  ( F  |`  ( C [,] D ) ) ) `  x
)  =  ( ( ( ( F  |`  ( C [,] D ) ) `  D )  -  ( ( F  |`  ( C [,] D
) ) `  C
) )  /  ( D  -  C )
) )  ->  (
( RR  _D  F
) `  x )  =  ( ( RR 
_D  ( F  |`  ( C [,] D ) ) ) `  x
) )
57 simp3 1063 . . . . . 6  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  ( F  |`  ( C [,] D ) ) ) `  x
)  =  ( ( ( ( F  |`  ( C [,] D ) ) `  D )  -  ( ( F  |`  ( C [,] D
) ) `  C
) )  /  ( D  -  C )
) )  ->  (
( RR  _D  ( F  |`  ( C [,] D ) ) ) `
 x )  =  ( ( ( ( F  |`  ( C [,] D ) ) `  D )  -  (
( F  |`  ( C [,] D ) ) `
 C ) )  /  ( D  -  C ) ) )
586rexrd 10089 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  RR* )
593, 6, 11ltled 10185 . . . . . . . . . . 11  |-  ( ph  ->  C  <_  D )
60 ubicc2 12289 . . . . . . . . . . 11  |-  ( ( C  e.  RR*  /\  D  e.  RR*  /\  C  <_  D )  ->  D  e.  ( C [,] D
) )
617, 58, 59, 60syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ( C [,] D ) )
62 fvres 6207 . . . . . . . . . 10  |-  ( D  e.  ( C [,] D )  ->  (
( F  |`  ( C [,] D ) ) `
 D )  =  ( F `  D
) )
6361, 62syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( F  |`  ( C [,] D ) ) `  D )  =  ( F `  D ) )
64 lbicc2 12288 . . . . . . . . . . 11  |-  ( ( C  e.  RR*  /\  D  e.  RR*  /\  C  <_  D )  ->  C  e.  ( C [,] D
) )
657, 58, 59, 64syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ( C [,] D ) )
66 fvres 6207 . . . . . . . . . 10  |-  ( C  e.  ( C [,] D )  ->  (
( F  |`  ( C [,] D ) ) `
 C )  =  ( F `  C
) )
6765, 66syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( F  |`  ( C [,] D ) ) `  C )  =  ( F `  C ) )
6863, 67oveq12d 6668 . . . . . . . 8  |-  ( ph  ->  ( ( ( F  |`  ( C [,] D
) ) `  D
)  -  ( ( F  |`  ( C [,] D ) ) `  C ) )  =  ( ( F `  D )  -  ( F `  C )
) )
6968oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( ( ( F  |`  ( C [,] D ) ) `  D )  -  (
( F  |`  ( C [,] D ) ) `
 C ) )  /  ( D  -  C ) )  =  ( ( ( F `
 D )  -  ( F `  C ) )  /  ( D  -  C ) ) )
70693ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  ( F  |`  ( C [,] D ) ) ) `  x
)  =  ( ( ( ( F  |`  ( C [,] D ) ) `  D )  -  ( ( F  |`  ( C [,] D
) ) `  C
) )  /  ( D  -  C )
) )  ->  (
( ( ( F  |`  ( C [,] D
) ) `  D
)  -  ( ( F  |`  ( C [,] D ) ) `  C ) )  / 
( D  -  C
) )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )
7156, 57, 703eqtrd 2660 . . . . 5  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  ( F  |`  ( C [,] D ) ) ) `  x
)  =  ( ( ( ( F  |`  ( C [,] D ) ) `  D )  -  ( ( F  |`  ( C [,] D
) ) `  C
) )  /  ( D  -  C )
) )  ->  (
( RR  _D  F
) `  x )  =  ( ( ( F `  D )  -  ( F `  C ) )  / 
( D  -  C
) ) )
72 simp3 1063 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( ( RR  _D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )
7372eqcomd 2628 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( (
( F `  D
)  -  ( F `
 C ) )  /  ( D  -  C ) )  =  ( ( RR  _D  F ) `  x
) )
7419, 61sseldd 3604 . . . . . . . . . . . . . . 15  |-  ( ph  ->  D  e.  ( A (,) B ) )
7520, 74ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  D
)  e.  RR )
7620, 2ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  C
)  e.  RR )
7775, 76resubcld 10458 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( F `  D )  -  ( F `  C )
)  e.  RR )
7877recnd 10068 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F `  D )  -  ( F `  C )
)  e.  CC )
79783ad2ant1 1082 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( ( F `  D )  -  ( F `  C ) )  e.  CC )
80 dvfre 23714 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( A (,) B ) --> RR 
/\  ( A (,) B )  C_  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> RR )
8120, 24, 80syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
8225feq2d 6031 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> RR  <->  ( RR  _D  F ) : ( A (,) B ) --> RR ) )
8381, 82mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> RR )
8483adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( RR  _D  F ) : ( A (,) B ) --> RR )
8546sselda 3603 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  x  e.  ( A (,) B ) )
8684, 85ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( ( RR  _D  F ) `  x )  e.  RR )
8786recnd 10068 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
88873adant3 1081 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
896, 3resubcld 10458 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D  -  C
)  e.  RR )
9089recnd 10068 . . . . . . . . . . . 12  |-  ( ph  ->  ( D  -  C
)  e.  CC )
91903ad2ant1 1082 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( D  -  C )  e.  CC )
923, 6posdifd 10614 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  <  D  <->  0  <  ( D  -  C ) ) )
9311, 92mpbid 222 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <  ( D  -  C ) )
9493gt0ne0d 10592 . . . . . . . . . . . 12  |-  ( ph  ->  ( D  -  C
)  =/=  0 )
95943ad2ant1 1082 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( D  -  C )  =/=  0
)
9679, 88, 91, 95divmul3d 10835 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( (
( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) )  =  ( ( RR 
_D  F ) `  x )  <->  ( ( F `  D )  -  ( F `  C ) )  =  ( ( ( RR 
_D  F ) `  x )  x.  ( D  -  C )
) ) )
9773, 96mpbid 222 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( ( F `  D )  -  ( F `  C ) )  =  ( ( ( RR 
_D  F ) `  x )  x.  ( D  -  C )
) )
9897fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( abs `  ( ( F `  D )  -  ( F `  C )
) )  =  ( abs `  ( ( ( RR  _D  F
) `  x )  x.  ( D  -  C
) ) ) )
9990adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( D  -  C )  e.  CC )
10087, 99absmuld 14193 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( abs `  ( ( ( RR 
_D  F ) `  x )  x.  ( D  -  C )
) )  =  ( ( abs `  (
( RR  _D  F
) `  x )
)  x.  ( abs `  ( D  -  C
) ) ) )
1011003adant3 1081 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( abs `  ( ( ( RR 
_D  F ) `  x )  x.  ( D  -  C )
) )  =  ( ( abs `  (
( RR  _D  F
) `  x )
)  x.  ( abs `  ( D  -  C
) ) ) )
10298, 101eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( abs `  ( ( F `  D )  -  ( F `  C )
) )  =  ( ( abs `  (
( RR  _D  F
) `  x )
)  x.  ( abs `  ( D  -  C
) ) ) )
1033, 6, 59abssubge0d 14170 . . . . . . . . 9  |-  ( ph  ->  ( abs `  ( D  -  C )
)  =  ( D  -  C ) )
104103oveq2d 6666 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  (
( RR  _D  F
) `  x )
)  x.  ( abs `  ( D  -  C
) ) )  =  ( ( abs `  (
( RR  _D  F
) `  x )
)  x.  ( D  -  C ) ) )
1051043ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( ( abs `  ( ( RR 
_D  F ) `  x ) )  x.  ( abs `  ( D  -  C )
) )  =  ( ( abs `  (
( RR  _D  F
) `  x )
)  x.  ( D  -  C ) ) )
106102, 105eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( abs `  ( ( F `  D )  -  ( F `  C )
) )  =  ( ( abs `  (
( RR  _D  F
) `  x )
)  x.  ( D  -  C ) ) )
10787abscld 14175 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( abs `  ( ( RR  _D  F ) `  x
) )  e.  RR )
108 dvbdfbdioolem1.k . . . . . . . . 9  |-  ( ph  ->  K  e.  RR )
109108adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  K  e.  RR )
11089adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( D  -  C )  e.  RR )
111 0red 10041 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
112111, 89, 93ltled 10185 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( D  -  C ) )
113112adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  0  <_  ( D  -  C ) )
114 dvbdfbdioolem1.dvbd . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( A (,) B ) ( abs `  (
( RR  _D  F
) `  x )
)  <_  K )
115114adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  A. x  e.  ( A (,) B
) ( abs `  (
( RR  _D  F
) `  x )
)  <_  K )
116 rspa 2930 . . . . . . . . 9  |-  ( ( A. x  e.  ( A (,) B ) ( abs `  (
( RR  _D  F
) `  x )
)  <_  K  /\  x  e.  ( A (,) B ) )  -> 
( abs `  (
( RR  _D  F
) `  x )
)  <_  K )
117115, 85, 116syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( abs `  ( ( RR  _D  F ) `  x
) )  <_  K
)
118107, 109, 110, 113, 117lemul1ad 10963 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( ( abs `  ( ( RR 
_D  F ) `  x ) )  x.  ( D  -  C
) )  <_  ( K  x.  ( D  -  C ) ) )
1191183adant3 1081 . . . . . 6  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( ( abs `  ( ( RR 
_D  F ) `  x ) )  x.  ( D  -  C
) )  <_  ( K  x.  ( D  -  C ) ) )
120106, 119eqbrtrd 4675 . . . . 5  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( abs `  ( ( F `  D )  -  ( F `  C )
) )  <_  ( K  x.  ( D  -  C ) ) )
12171, 120syld3an3 1371 . . . 4  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  ( F  |`  ( C [,] D ) ) ) `  x
)  =  ( ( ( ( F  |`  ( C [,] D ) ) `  D )  -  ( ( F  |`  ( C [,] D
) ) `  C
) )  /  ( D  -  C )
) )  ->  ( abs `  ( ( F `
 D )  -  ( F `  C ) ) )  <_  ( K  x.  ( D  -  C ) ) )
12299abscld 14175 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( abs `  ( D  -  C
) )  e.  RR )
1238, 12resubcld 10458 . . . . . . . . 9  |-  ( ph  ->  ( B  -  A
)  e.  RR )
124123adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( B  -  A )  e.  RR )
12587absge0d 14183 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  0  <_  ( abs `  ( ( RR  _D  F ) `
 x ) ) )
12699absge0d 14183 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  0  <_  ( abs `  ( D  -  C ) ) )
1276, 12, 8, 3, 44, 43le2subd 10647 . . . . . . . . . 10  |-  ( ph  ->  ( D  -  C
)  <_  ( B  -  A ) )
128103, 127eqbrtrd 4675 . . . . . . . . 9  |-  ( ph  ->  ( abs `  ( D  -  C )
)  <_  ( B  -  A ) )
129128adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( abs `  ( D  -  C
) )  <_  ( B  -  A )
)
130107, 109, 122, 124, 125, 126, 117, 129lemul12ad 10966 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( C (,) D ) )  ->  ( ( abs `  ( ( RR 
_D  F ) `  x ) )  x.  ( abs `  ( D  -  C )
) )  <_  ( K  x.  ( B  -  A ) ) )
1311303adant3 1081 . . . . . 6  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( ( abs `  ( ( RR 
_D  F ) `  x ) )  x.  ( abs `  ( D  -  C )
) )  <_  ( K  x.  ( B  -  A ) ) )
132102, 131eqbrtrd 4675 . . . . 5  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  D )  -  ( F `  C )
)  /  ( D  -  C ) ) )  ->  ( abs `  ( ( F `  D )  -  ( F `  C )
) )  <_  ( K  x.  ( B  -  A ) ) )
13371, 132syld3an3 1371 . . . 4  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  ( F  |`  ( C [,] D ) ) ) `  x
)  =  ( ( ( ( F  |`  ( C [,] D ) ) `  D )  -  ( ( F  |`  ( C [,] D
) ) `  C
) )  /  ( D  -  C )
) )  ->  ( abs `  ( ( F `
 D )  -  ( F `  C ) ) )  <_  ( K  x.  ( B  -  A ) ) )
134121, 133jca 554 . . 3  |-  ( (
ph  /\  x  e.  ( C (,) D )  /\  ( ( RR 
_D  ( F  |`  ( C [,] D ) ) ) `  x
)  =  ( ( ( ( F  |`  ( C [,] D ) ) `  D )  -  ( ( F  |`  ( C [,] D
) ) `  C
) )  /  ( D  -  C )
) )  ->  (
( abs `  (
( F `  D
)  -  ( F `
 C ) ) )  <_  ( K  x.  ( D  -  C
) )  /\  ( abs `  ( ( F `
 D )  -  ( F `  C ) ) )  <_  ( K  x.  ( B  -  A ) ) ) )
135134rexlimdv3a 3033 . 2  |-  ( ph  ->  ( E. x  e.  ( C (,) D
) ( ( RR 
_D  ( F  |`  ( C [,] D ) ) ) `  x
)  =  ( ( ( ( F  |`  ( C [,] D ) ) `  D )  -  ( ( F  |`  ( C [,] D
) ) `  C
) )  /  ( D  -  C )
)  ->  ( ( abs `  ( ( F `
 D )  -  ( F `  C ) ) )  <_  ( K  x.  ( D  -  C ) )  /\  ( abs `  ( ( F `  D )  -  ( F `  C ) ) )  <_  ( K  x.  ( B  -  A
) ) ) ) )
13651, 135mpd 15 1  |-  ( ph  ->  ( ( abs `  (
( F `  D
)  -  ( F `
 C ) ) )  <_  ( K  x.  ( D  -  C
) )  /\  ( abs `  ( ( F `
 D )  -  ( F `  C ) ) )  <_  ( K  x.  ( B  -  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   (,)cioo 12175   [,]cicc 12178   abscabs 13974   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   intcnt 20821   -cn->ccncf 22679    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvbdfbdioolem2  40144  ioodvbdlimc1lem1  40146  ioodvbdlimc1lem2  40147  ioodvbdlimc2lem  40149
  Copyright terms: Public domain W3C validator