MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcn Structured version   Visualization version   Unicode version

Theorem logcn 24393
Description: The logarithm function is continuous away from the branch cut at negative reals. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypothesis
Ref Expression
logcn.d  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
Assertion
Ref Expression
logcn  |-  ( log  |`  D )  e.  ( D -cn-> CC )

Proof of Theorem logcn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logf1o 24311 . . . . . . 7  |-  log :
( CC  \  {
0 } ) -1-1-onto-> ran  log
2 f1of 6137 . . . . . . 7  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  log : ( CC 
\  { 0 } ) --> ran  log )
31, 2ax-mp 5 . . . . . 6  |-  log :
( CC  \  {
0 } ) --> ran 
log
4 logcn.d . . . . . . 7  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
54logdmss 24388 . . . . . 6  |-  D  C_  ( CC  \  { 0 } )
6 fssres 6070 . . . . . 6  |-  ( ( log : ( CC 
\  { 0 } ) --> ran  log  /\  D  C_  ( CC  \  {
0 } ) )  ->  ( log  |`  D ) : D --> ran  log )
73, 5, 6mp2an 708 . . . . 5  |-  ( log  |`  D ) : D --> ran  log
8 ffn 6045 . . . . 5  |-  ( ( log  |`  D ) : D --> ran  log  ->  ( log  |`  D )  Fn  D )
97, 8ax-mp 5 . . . 4  |-  ( log  |`  D )  Fn  D
10 dffn5 6241 . . . 4  |-  ( ( log  |`  D )  Fn  D  <->  ( log  |`  D )  =  ( x  e.  D  |->  ( ( log  |`  D ) `  x
) ) )
119, 10mpbi 220 . . 3  |-  ( log  |`  D )  =  ( x  e.  D  |->  ( ( log  |`  D ) `
 x ) )
12 fvres 6207 . . . . 5  |-  ( x  e.  D  ->  (
( log  |`  D ) `
 x )  =  ( log `  x
) )
134ellogdm 24385 . . . . . . . 8  |-  ( x  e.  D  <->  ( x  e.  CC  /\  ( x  e.  RR  ->  x  e.  RR+ ) ) )
1413simplbi 476 . . . . . . 7  |-  ( x  e.  D  ->  x  e.  CC )
154logdmn0 24386 . . . . . . 7  |-  ( x  e.  D  ->  x  =/=  0 )
1614, 15logcld 24317 . . . . . 6  |-  ( x  e.  D  ->  ( log `  x )  e.  CC )
1716replimd 13937 . . . . 5  |-  ( x  e.  D  ->  ( log `  x )  =  ( ( Re `  ( log `  x ) )  +  ( _i  x.  ( Im `  ( log `  x ) ) ) ) )
18 relog 24343 . . . . . . . 8  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( Re `  ( log `  x ) )  =  ( log `  ( abs `  x ) ) )
1914, 15, 18syl2anc 693 . . . . . . 7  |-  ( x  e.  D  ->  (
Re `  ( log `  x ) )  =  ( log `  ( abs `  x ) ) )
2014, 15absrpcld 14187 . . . . . . . 8  |-  ( x  e.  D  ->  ( abs `  x )  e.  RR+ )
21 fvres 6207 . . . . . . . 8  |-  ( ( abs `  x )  e.  RR+  ->  ( ( log  |`  RR+ ) `  ( abs `  x ) )  =  ( log `  ( abs `  x
) ) )
2220, 21syl 17 . . . . . . 7  |-  ( x  e.  D  ->  (
( log  |`  RR+ ) `  ( abs `  x
) )  =  ( log `  ( abs `  x ) ) )
2319, 22eqtr4d 2659 . . . . . 6  |-  ( x  e.  D  ->  (
Re `  ( log `  x ) )  =  ( ( log  |`  RR+ ) `  ( abs `  x
) ) )
2423oveq1d 6665 . . . . 5  |-  ( x  e.  D  ->  (
( Re `  ( log `  x ) )  +  ( _i  x.  ( Im `  ( log `  x ) ) ) )  =  ( ( ( log  |`  RR+ ) `  ( abs `  x
) )  +  ( _i  x.  ( Im
`  ( log `  x
) ) ) ) )
2512, 17, 243eqtrd 2660 . . . 4  |-  ( x  e.  D  ->  (
( log  |`  D ) `
 x )  =  ( ( ( log  |`  RR+ ) `  ( abs `  x ) )  +  ( _i  x.  ( Im `  ( log `  x ) ) ) ) )
2625mpteq2ia 4740 . . 3  |-  ( x  e.  D  |->  ( ( log  |`  D ) `  x ) )  =  ( x  e.  D  |->  ( ( ( log  |`  RR+ ) `  ( abs `  x ) )  +  ( _i  x.  ( Im `  ( log `  x ) ) ) ) )
2711, 26eqtri 2644 . 2  |-  ( log  |`  D )  =  ( x  e.  D  |->  ( ( ( log  |`  RR+ ) `  ( abs `  x
) )  +  ( _i  x.  ( Im
`  ( log `  x
) ) ) ) )
28 eqid 2622 . . . 4  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2928addcn 22668 . . . . 5  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
3029a1i 11 . . . 4  |-  ( T. 
->  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
3128cnfldtopon 22586 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
3214ssriv 3607 . . . . . . . 8  |-  D  C_  CC
33 resttopon 20965 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  D  C_  CC )  ->  (
( TopOpen ` fld )t  D )  e.  (TopOn `  D ) )
3431, 32, 33mp2an 708 . . . . . . 7  |-  ( (
TopOpen ` fld )t  D )  e.  (TopOn `  D )
3534a1i 11 . . . . . 6  |-  ( T. 
->  ( ( TopOpen ` fld )t  D )  e.  (TopOn `  D ) )
36 absf 14077 . . . . . . . . . . . 12  |-  abs : CC
--> RR
37 fssres 6070 . . . . . . . . . . . 12  |-  ( ( abs : CC --> RR  /\  D  C_  CC )  -> 
( abs  |`  D ) : D --> RR )
3836, 32, 37mp2an 708 . . . . . . . . . . 11  |-  ( abs  |`  D ) : D --> RR
3938a1i 11 . . . . . . . . . 10  |-  ( T. 
->  ( abs  |`  D ) : D --> RR )
4039feqmptd 6249 . . . . . . . . 9  |-  ( T. 
->  ( abs  |`  D )  =  ( x  e.  D  |->  ( ( abs  |`  D ) `  x
) ) )
41 fvres 6207 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
( abs  |`  D ) `
 x )  =  ( abs `  x
) )
4241mpteq2ia 4740 . . . . . . . . 9  |-  ( x  e.  D  |->  ( ( abs  |`  D ) `  x ) )  =  ( x  e.  D  |->  ( abs `  x
) )
4340, 42syl6eq 2672 . . . . . . . 8  |-  ( T. 
->  ( abs  |`  D )  =  ( x  e.  D  |->  ( abs `  x
) ) )
44 ffn 6045 . . . . . . . . . . 11  |-  ( ( abs  |`  D ) : D --> RR  ->  ( abs  |`  D )  Fn  D )
4538, 44ax-mp 5 . . . . . . . . . 10  |-  ( abs  |`  D )  Fn  D
4641, 20eqeltrd 2701 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
( abs  |`  D ) `
 x )  e.  RR+ )
4746rgen 2922 . . . . . . . . . 10  |-  A. x  e.  D  ( ( abs  |`  D ) `  x )  e.  RR+
48 ffnfv 6388 . . . . . . . . . 10  |-  ( ( abs  |`  D ) : D --> RR+  <->  ( ( abs  |`  D )  Fn  D  /\  A. x  e.  D  ( ( abs  |`  D ) `
 x )  e.  RR+ ) )
4945, 47, 48mpbir2an 955 . . . . . . . . 9  |-  ( abs  |`  D ) : D --> RR+
50 rpssre 11843 . . . . . . . . . . 11  |-  RR+  C_  RR
51 ax-resscn 9993 . . . . . . . . . . 11  |-  RR  C_  CC
5250, 51sstri 3612 . . . . . . . . . 10  |-  RR+  C_  CC
53 abscncf 22704 . . . . . . . . . . 11  |-  abs  e.  ( CC -cn-> RR )
54 rescncf 22700 . . . . . . . . . . 11  |-  ( D 
C_  CC  ->  ( abs 
e.  ( CC -cn-> RR )  ->  ( abs  |`  D )  e.  ( D -cn-> RR ) ) )
5532, 53, 54mp2 9 . . . . . . . . . 10  |-  ( abs  |`  D )  e.  ( D -cn-> RR )
56 cncffvrn 22701 . . . . . . . . . 10  |-  ( (
RR+  C_  CC  /\  ( abs  |`  D )  e.  ( D -cn-> RR ) )  ->  ( ( abs  |`  D )  e.  ( D -cn-> RR+ )  <->  ( abs  |`  D ) : D --> RR+ ) )
5752, 55, 56mp2an 708 . . . . . . . . 9  |-  ( ( abs  |`  D )  e.  ( D -cn-> RR+ )  <->  ( abs  |`  D ) : D --> RR+ )
5849, 57mpbir 221 . . . . . . . 8  |-  ( abs  |`  D )  e.  ( D -cn-> RR+ )
5943, 58syl6eqelr 2710 . . . . . . 7  |-  ( T. 
->  ( x  e.  D  |->  ( abs `  x
) )  e.  ( D -cn-> RR+ ) )
60 eqid 2622 . . . . . . . . 9  |-  ( (
TopOpen ` fld )t  D )  =  ( ( TopOpen ` fld )t  D )
61 eqid 2622 . . . . . . . . 9  |-  ( (
TopOpen ` fld )t 
RR+ )  =  ( ( TopOpen ` fld )t  RR+ )
6228, 60, 61cncfcn 22712 . . . . . . . 8  |-  ( ( D  C_  CC  /\  RR+  C_  CC )  ->  ( D -cn-> RR+ )  =  ( (
( TopOpen ` fld )t  D )  Cn  (
( TopOpen ` fld )t  RR+ ) ) )
6332, 52, 62mp2an 708 . . . . . . 7  |-  ( D
-cn->
RR+ )  =  ( ( ( TopOpen ` fld )t  D )  Cn  (
( TopOpen ` fld )t  RR+ ) )
6459, 63syl6eleq 2711 . . . . . 6  |-  ( T. 
->  ( x  e.  D  |->  ( abs `  x
) )  e.  ( ( ( TopOpen ` fld )t  D )  Cn  (
( TopOpen ` fld )t  RR+ ) ) )
65 ssid 3624 . . . . . . . . . 10  |-  CC  C_  CC
66 cncfss 22702 . . . . . . . . . 10  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( RR+ -cn-> RR )  C_  ( RR+ -cn-> CC ) )
6751, 65, 66mp2an 708 . . . . . . . . 9  |-  ( RR+ -cn-> RR )  C_  ( RR+ -cn-> CC )
68 relogcn 24384 . . . . . . . . 9  |-  ( log  |`  RR+ )  e.  (
RR+ -cn-> RR )
6967, 68sselii 3600 . . . . . . . 8  |-  ( log  |`  RR+ )  e.  (
RR+ -cn-> CC )
7069a1i 11 . . . . . . 7  |-  ( T. 
->  ( log  |`  RR+ )  e.  ( RR+ -cn-> CC ) )
7128cnfldtop 22587 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  e.  Top
7231toponunii 20721 . . . . . . . . . . . 12  |-  CC  =  U. ( TopOpen ` fld )
7372restid 16094 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
7471, 73ax-mp 5 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
7574eqcomi 2631 . . . . . . . . 9  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
7628, 61, 75cncfcn 22712 . . . . . . . 8  |-  ( (
RR+  C_  CC  /\  CC  C_  CC )  ->  ( RR+ -cn-> CC )  =  ( ( ( TopOpen ` fld )t  RR+ )  Cn  ( TopOpen
` fld
) ) )
7752, 65, 76mp2an 708 . . . . . . 7  |-  ( RR+ -cn-> CC )  =  ( ( ( TopOpen ` fld )t  RR+ )  Cn  ( TopOpen
` fld
) )
7870, 77syl6eleq 2711 . . . . . 6  |-  ( T. 
->  ( log  |`  RR+ )  e.  ( ( ( TopOpen ` fld )t  RR+ )  Cn  ( TopOpen ` fld ) ) )
7935, 64, 78cnmpt11f 21467 . . . . 5  |-  ( T. 
->  ( x  e.  D  |->  ( ( log  |`  RR+ ) `  ( abs `  x
) ) )  e.  ( ( ( TopOpen ` fld )t  D
)  Cn  ( TopOpen ` fld )
) )
8028, 60, 75cncfcn 22712 . . . . . 6  |-  ( ( D  C_  CC  /\  CC  C_  CC )  ->  ( D -cn-> CC )  =  ( ( ( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) ) )
8132, 65, 80mp2an 708 . . . . 5  |-  ( D
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) )
8279, 81syl6eleqr 2712 . . . 4  |-  ( T. 
->  ( x  e.  D  |->  ( ( log  |`  RR+ ) `  ( abs `  x
) ) )  e.  ( D -cn-> CC ) )
8316imcld 13935 . . . . . . . 8  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  e.  RR )
8483recnd 10068 . . . . . . 7  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  e.  CC )
8584adantl 482 . . . . . 6  |-  ( ( T.  /\  x  e.  D )  ->  (
Im `  ( log `  x ) )  e.  CC )
86 eqidd 2623 . . . . . 6  |-  ( T. 
->  ( x  e.  D  |->  ( Im `  ( log `  x ) ) )  =  ( x  e.  D  |->  ( Im
`  ( log `  x
) ) ) )
87 eqidd 2623 . . . . . 6  |-  ( T. 
->  ( y  e.  CC  |->  ( _i  x.  y
) )  =  ( y  e.  CC  |->  ( _i  x.  y ) ) )
88 oveq2 6658 . . . . . 6  |-  ( y  =  ( Im `  ( log `  x ) )  ->  ( _i  x.  y )  =  ( _i  x.  ( Im
`  ( log `  x
) ) ) )
8985, 86, 87, 88fmptco 6396 . . . . 5  |-  ( T. 
->  ( ( y  e.  CC  |->  ( _i  x.  y ) )  o.  ( x  e.  D  |->  ( Im `  ( log `  x ) ) ) )  =  ( x  e.  D  |->  ( _i  x.  ( Im
`  ( log `  x
) ) ) ) )
90 cncfss 22702 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( D -cn-> RR )  C_  ( D -cn-> CC ) )
9151, 65, 90mp2an 708 . . . . . . . 8  |-  ( D
-cn-> RR )  C_  ( D -cn-> CC )
924logcnlem5 24392 . . . . . . . 8  |-  ( x  e.  D  |->  ( Im
`  ( log `  x
) ) )  e.  ( D -cn-> RR )
9391, 92sselii 3600 . . . . . . 7  |-  ( x  e.  D  |->  ( Im
`  ( log `  x
) ) )  e.  ( D -cn-> CC )
9493a1i 11 . . . . . 6  |-  ( T. 
->  ( x  e.  D  |->  ( Im `  ( log `  x ) ) )  e.  ( D
-cn-> CC ) )
95 ax-icn 9995 . . . . . . 7  |-  _i  e.  CC
96 eqid 2622 . . . . . . . 8  |-  ( y  e.  CC  |->  ( _i  x.  y ) )  =  ( y  e.  CC  |->  ( _i  x.  y ) )
9796mulc1cncf 22708 . . . . . . 7  |-  ( _i  e.  CC  ->  (
y  e.  CC  |->  ( _i  x.  y ) )  e.  ( CC
-cn-> CC ) )
9895, 97mp1i 13 . . . . . 6  |-  ( T. 
->  ( y  e.  CC  |->  ( _i  x.  y
) )  e.  ( CC -cn-> CC ) )
9994, 98cncfco 22710 . . . . 5  |-  ( T. 
->  ( ( y  e.  CC  |->  ( _i  x.  y ) )  o.  ( x  e.  D  |->  ( Im `  ( log `  x ) ) ) )  e.  ( D -cn-> CC ) )
10089, 99eqeltrrd 2702 . . . 4  |-  ( T. 
->  ( x  e.  D  |->  ( _i  x.  (
Im `  ( log `  x ) ) ) )  e.  ( D
-cn-> CC ) )
10128, 30, 82, 100cncfmpt2f 22717 . . 3  |-  ( T. 
->  ( x  e.  D  |->  ( ( ( log  |`  RR+ ) `  ( abs `  x ) )  +  ( _i  x.  ( Im `  ( log `  x ) ) ) ) )  e.  ( D -cn-> CC ) )
102101trud 1493 . 2  |-  ( x  e.  D  |->  ( ( ( log  |`  RR+ ) `  ( abs `  x
) )  +  ( _i  x.  ( Im
`  ( log `  x
) ) ) ) )  e.  ( D
-cn-> CC )
10327, 102eqeltri 2697 1  |-  ( log  |`  D )  e.  ( D -cn-> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483   T. wtru 1484    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    C_ wss 3574   {csn 4177    |-> cmpt 4729   ran crn 5115    |` cres 5116    o. ccom 5118    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   _ici 9938    + caddc 9939    x. cmul 9941   -oocmnf 10072   RR+crp 11832   (,]cioc 12176   Recre 13837   Imcim 13838   abscabs 13974   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363   -cn->ccncf 22679   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  dvlog  24397  efopnlem2  24403  dvcncxp1  24484  cxpcn  24486  lgamgulmlem2  24756  lgamcvg2  24781  areacirclem4  33503
  Copyright terms: Public domain W3C validator