MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinv Structured version   Visualization version   Unicode version

Theorem dchrinv 24986
Description: The inverse of a Dirichlet character is the conjugate (which is also the multiplicative inverse, because the values of  X are unimodular). (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrabs.g  |-  G  =  (DChr `  N )
dchrabs.d  |-  D  =  ( Base `  G
)
dchrabs.x  |-  ( ph  ->  X  e.  D )
dchrinv.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
dchrinv  |-  ( ph  ->  ( I `  X
)  =  ( *  o.  X ) )

Proof of Theorem dchrinv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrabs.g . . . . . . . 8  |-  G  =  (DChr `  N )
2 eqid 2622 . . . . . . . 8  |-  (ℤ/n `  N
)  =  (ℤ/n `  N
)
3 dchrabs.d . . . . . . . 8  |-  D  =  ( Base `  G
)
4 eqid 2622 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
5 dchrabs.x . . . . . . . 8  |-  ( ph  ->  X  e.  D )
6 cjf 13844 . . . . . . . . . 10  |-  * : CC --> CC
7 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  (ℤ/n `  N ) )  =  ( Base `  (ℤ/n `  N
) )
81, 2, 3, 7, 5dchrf 24967 . . . . . . . . . 10  |-  ( ph  ->  X : ( Base `  (ℤ/n `  N ) ) --> CC )
9 fco 6058 . . . . . . . . . 10  |-  ( ( * : CC --> CC  /\  X : ( Base `  (ℤ/n `  N
) ) --> CC )  ->  ( *  o.  X ) : (
Base `  (ℤ/n `  N ) ) --> CC )
106, 8, 9sylancr 695 . . . . . . . . 9  |-  ( ph  ->  ( *  o.  X
) : ( Base `  (ℤ/n `  N ) ) --> CC )
11 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21  |-  (Unit `  (ℤ/n `  N ) )  =  (Unit `  (ℤ/n `  N ) )
121, 3dchrrcl 24965 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( X  e.  D  ->  N  e.  NN )
135, 12syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  N  e.  NN )
141, 2, 7, 11, 13, 3dchrelbas3 24963 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( X  e.  D  <->  ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  /\  ( X `  ( 1r
`  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) ) ) )
155, 14mpbid 222 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( X : (
Base `  (ℤ/n `  N ) ) --> CC 
/\  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  /\  ( X `  ( 1r
`  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) ) )
1615simprd 479 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  /\  ( X `  ( 1r
`  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) )
1716simp1d 1073 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
1817r19.21bi 2932 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  A. y  e.  (Unit `  (ℤ/n `  N ) ) ( X `  ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
1918r19.21bi 2932 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  /\  y  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( X `  ( x ( .r
`  (ℤ/n `  N ) ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )
2019anasss 679 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( X `  ( x ( .r
`  (ℤ/n `  N ) ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )
2120fveq2d 6195 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( * `  ( X `  ( x ( .r `  (ℤ/n `  N
) ) y ) ) )  =  ( * `  ( ( X `  x )  x.  ( X `  y ) ) ) )
228adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  X : (
Base `  (ℤ/n `  N ) ) --> CC )
237, 11unitss 18660 . . . . . . . . . . . . . . . 16  |-  (Unit `  (ℤ/n `  N ) )  C_  ( Base `  (ℤ/n `  N ) )
24 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  x  e.  (Unit `  (ℤ/n `  N ) ) )
2523, 24sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  x  e.  (
Base `  (ℤ/n `  N ) ) )
2622, 25ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( X `  x )  e.  CC )
27 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  y  e.  (Unit `  (ℤ/n `  N ) ) )
2823, 27sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  y  e.  (
Base `  (ℤ/n `  N ) ) )
2922, 28ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( X `  y )  e.  CC )
3026, 29cjmuld 13961 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( * `  ( ( X `  x )  x.  ( X `  y )
) )  =  ( ( * `  ( X `  x )
)  x.  ( * `
 ( X `  y ) ) ) )
3121, 30eqtrd 2656 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( * `  ( X `  ( x ( .r `  (ℤ/n `  N
) ) y ) ) )  =  ( ( * `  ( X `  x )
)  x.  ( * `
 ( X `  y ) ) ) )
3213nnnn0d 11351 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN0 )
332zncrng 19893 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  (ℤ/n `  N
)  e.  CRing )
34 crngring 18558 . . . . . . . . . . . . . . . 16  |-  ( (ℤ/n `  N )  e.  CRing  -> 
(ℤ/n `  N )  e.  Ring )
3532, 33, 343syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  (ℤ/n `  N )  e.  Ring )
3635adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  (ℤ/n `  N )  e.  Ring )
37 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( .r
`  (ℤ/n `  N ) )  =  ( .r `  (ℤ/n `  N
) )
387, 37ringcl 18561 . . . . . . . . . . . . . 14  |-  ( ( (ℤ/n `  N )  e.  Ring  /\  x  e.  ( Base `  (ℤ/n `  N ) )  /\  y  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( x ( .r `  (ℤ/n `  N
) ) y )  e.  ( Base `  (ℤ/n `  N
) ) )
3936, 25, 28, 38syl3anc 1326 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( x ( .r `  (ℤ/n `  N
) ) y )  e.  ( Base `  (ℤ/n `  N
) ) )
40 fvco3 6275 . . . . . . . . . . . . 13  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  ( x ( .r `  (ℤ/n `  N
) ) y )  e.  ( Base `  (ℤ/n `  N
) ) )  -> 
( ( *  o.  X ) `  (
x ( .r `  (ℤ/n `  N ) ) y ) )  =  ( * `  ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) ) ) )
4122, 39, 40syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( *  o.  X ) `  ( x ( .r
`  (ℤ/n `  N ) ) y ) )  =  ( * `  ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) ) ) )
42 fvco3 6275 . . . . . . . . . . . . . 14  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( ( *  o.  X ) `  x )  =  ( * `  ( X `
 x ) ) )
4322, 25, 42syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( *  o.  X ) `  x )  =  ( * `  ( X `
 x ) ) )
44 fvco3 6275 . . . . . . . . . . . . . 14  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  y  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( ( *  o.  X ) `  y )  =  ( * `  ( X `
 y ) ) )
4522, 28, 44syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( *  o.  X ) `  y )  =  ( * `  ( X `
 y ) ) )
4643, 45oveq12d 6668 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( ( *  o.  X ) `
 x )  x.  ( ( *  o.  X ) `  y
) )  =  ( ( * `  ( X `  x )
)  x.  ( * `
 ( X `  y ) ) ) )
4731, 41, 463eqtr4d 2666 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( *  o.  X ) `  ( x ( .r
`  (ℤ/n `  N ) ) y ) )  =  ( ( ( *  o.  X ) `  x
)  x.  ( ( *  o.  X ) `
 y ) ) )
4847ralrimivva 2971 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( ( *  o.  X ) `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( ( *  o.  X
) `  x )  x.  ( ( *  o.  X ) `  y
) ) )
49 eqid 2622 . . . . . . . . . . . . . 14  |-  ( 1r
`  (ℤ/n `  N ) )  =  ( 1r `  (ℤ/n `  N
) )
507, 49ringidcl 18568 . . . . . . . . . . . . 13  |-  ( (ℤ/n `  N )  e.  Ring  -> 
( 1r `  (ℤ/n `  N
) )  e.  (
Base `  (ℤ/n `  N ) ) )
5135, 50syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1r `  (ℤ/n `  N
) )  e.  (
Base `  (ℤ/n `  N ) ) )
52 fvco3 6275 . . . . . . . . . . . 12  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  ( 1r `  (ℤ/n `  N ) )  e.  ( Base `  (ℤ/n `  N
) ) )  -> 
( ( *  o.  X ) `  ( 1r `  (ℤ/n `  N ) ) )  =  ( * `  ( X `  ( 1r
`  (ℤ/n `  N ) ) ) ) )
538, 51, 52syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( ( *  o.  X ) `  ( 1r `  (ℤ/n `  N ) ) )  =  ( * `  ( X `  ( 1r
`  (ℤ/n `  N ) ) ) ) )
5416simp2d 1074 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X `  ( 1r `  (ℤ/n `  N ) ) )  =  1 )
5554fveq2d 6195 . . . . . . . . . . . 12  |-  ( ph  ->  ( * `  ( X `  ( 1r `  (ℤ/n `  N ) ) ) )  =  ( * `
 1 ) )
56 1re 10039 . . . . . . . . . . . . 13  |-  1  e.  RR
57 cjre 13879 . . . . . . . . . . . . 13  |-  ( 1  e.  RR  ->  (
* `  1 )  =  1 )
5856, 57ax-mp 5 . . . . . . . . . . . 12  |-  ( * `
 1 )  =  1
5955, 58syl6eq 2672 . . . . . . . . . . 11  |-  ( ph  ->  ( * `  ( X `  ( 1r `  (ℤ/n `  N ) ) ) )  =  1 )
6053, 59eqtrd 2656 . . . . . . . . . 10  |-  ( ph  ->  ( ( *  o.  X ) `  ( 1r `  (ℤ/n `  N ) ) )  =  1 )
6116simp3d 1075 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  (
Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) )
628, 42sylan 488 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( *  o.  X ) `  x )  =  ( * `  ( X `
 x ) ) )
63 cj0 13898 . . . . . . . . . . . . . . . . . 18  |-  ( * `
 0 )  =  0
6463eqcomi 2631 . . . . . . . . . . . . . . . . 17  |-  0  =  ( * ` 
0 )
6564a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  0  =  ( * `  0 ) )
6662, 65eqeq12d 2637 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( ( *  o.  X ) `
 x )  =  0  <->  ( * `  ( X `  x ) )  =  ( * `
 0 ) ) )
678ffvelrnda 6359 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( X `  x )  e.  CC )
68 0cn 10032 . . . . . . . . . . . . . . . 16  |-  0  e.  CC
69 cj11 13902 . . . . . . . . . . . . . . . 16  |-  ( ( ( X `  x
)  e.  CC  /\  0  e.  CC )  ->  ( ( * `  ( X `  x ) )  =  ( * `
 0 )  <->  ( X `  x )  =  0 ) )
7067, 68, 69sylancl 694 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( * `
 ( X `  x ) )  =  ( * `  0
)  <->  ( X `  x )  =  0 ) )
7166, 70bitrd 268 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( ( *  o.  X ) `
 x )  =  0  <->  ( X `  x )  =  0 ) )
7271necon3bid 2838 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( ( *  o.  X ) `
 x )  =/=  0  <->  ( X `  x )  =/=  0
) )
7372imbi1d 331 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( ( ( *  o.  X
) `  x )  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N ) ) )  <-> 
( ( X `  x )  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N ) ) ) ) )
7473ralbidva 2985 . . . . . . . . . . 11  |-  ( ph  ->  ( A. x  e.  ( Base `  (ℤ/n `  N
) ) ( ( ( *  o.  X
) `  x )  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N ) ) )  <->  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) )
7561, 74mpbird 247 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  (
Base `  (ℤ/n `  N ) ) ( ( ( *  o.  X ) `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) )
7648, 60, 753jca 1242 . . . . . . . . 9  |-  ( ph  ->  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( ( *  o.  X ) `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( ( *  o.  X
) `  x )  x.  ( ( *  o.  X ) `  y
) )  /\  (
( *  o.  X
) `  ( 1r `  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( ( *  o.  X ) `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) )
771, 2, 7, 11, 13, 3dchrelbas3 24963 . . . . . . . . 9  |-  ( ph  ->  ( ( *  o.  X )  e.  D  <->  ( ( *  o.  X
) : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( ( *  o.  X ) `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( ( *  o.  X
) `  x )  x.  ( ( *  o.  X ) `  y
) )  /\  (
( *  o.  X
) `  ( 1r `  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( ( *  o.  X ) `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) ) ) )
7810, 76, 77mpbir2and 957 . . . . . . . 8  |-  ( ph  ->  ( *  o.  X
)  e.  D )
791, 2, 3, 4, 5, 78dchrmul 24973 . . . . . . 7  |-  ( ph  ->  ( X ( +g  `  G ) ( *  o.  X ) )  =  ( X  oF  x.  ( *  o.  X ) ) )
8079adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( X ( +g  `  G ) ( *  o.  X
) )  =  ( X  oF  x.  ( *  o.  X
) ) )
8180fveq1d 6193 . . . . 5  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X ( +g  `  G
) ( *  o.  X ) ) `  x )  =  ( ( X  oF  x.  ( *  o.  X ) ) `  x ) )
8223sseli 3599 . . . . . . . . 9  |-  ( x  e.  (Unit `  (ℤ/n `  N
) )  ->  x  e.  ( Base `  (ℤ/n `  N
) ) )
8382, 62sylan2 491 . . . . . . . 8  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( *  o.  X ) `  x )  =  ( * `  ( X `
 x ) ) )
8483oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X `
 x )  x.  ( ( *  o.  X ) `  x
) )  =  ( ( X `  x
)  x.  ( * `
 ( X `  x ) ) ) )
8582, 67sylan2 491 . . . . . . . 8  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( X `  x )  e.  CC )
8685absvalsqd 14181 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( abs `  ( X `  x
) ) ^ 2 )  =  ( ( X `  x )  x.  ( * `  ( X `  x ) ) ) )
875adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  X  e.  D
)
88 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  x  e.  (Unit `  (ℤ/n `  N ) ) )
891, 3, 87, 2, 11, 88dchrabs 24985 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( abs `  ( X `  x )
)  =  1 )
9089oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( abs `  ( X `  x
) ) ^ 2 )  =  ( 1 ^ 2 ) )
91 sq1 12958 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
9290, 91syl6eq 2672 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( abs `  ( X `  x
) ) ^ 2 )  =  1 )
9384, 86, 923eqtr2d 2662 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X `
 x )  x.  ( ( *  o.  X ) `  x
) )  =  1 )
948adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  X : (
Base `  (ℤ/n `  N ) ) --> CC )
95 ffn 6045 . . . . . . . 8  |-  ( X : ( Base `  (ℤ/n `  N
) ) --> CC  ->  X  Fn  ( Base `  (ℤ/n `  N
) ) )
9694, 95syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  X  Fn  ( Base `  (ℤ/n `  N ) ) )
97 ffn 6045 . . . . . . . . 9  |-  ( ( *  o.  X ) : ( Base `  (ℤ/n `  N
) ) --> CC  ->  ( *  o.  X )  Fn  ( Base `  (ℤ/n `  N
) ) )
9810, 97syl 17 . . . . . . . 8  |-  ( ph  ->  ( *  o.  X
)  Fn  ( Base `  (ℤ/n `  N ) ) )
9998adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( *  o.  X )  Fn  ( Base `  (ℤ/n `  N ) ) )
100 fvexd 6203 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( Base `  (ℤ/n `  N
) )  e.  _V )
10182adantl 482 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  x  e.  (
Base `  (ℤ/n `  N ) ) )
102 fnfvof 6911 . . . . . . 7  |-  ( ( ( X  Fn  ( Base `  (ℤ/n `  N ) )  /\  ( *  o.  X
)  Fn  ( Base `  (ℤ/n `  N ) ) )  /\  ( ( Base `  (ℤ/n `  N ) )  e. 
_V  /\  x  e.  ( Base `  (ℤ/n `  N ) ) ) )  ->  ( ( X  oF  x.  (
*  o.  X ) ) `  x )  =  ( ( X `
 x )  x.  ( ( *  o.  X ) `  x
) ) )
10396, 99, 100, 101, 102syl22anc 1327 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X  oF  x.  (
*  o.  X ) ) `  x )  =  ( ( X `
 x )  x.  ( ( *  o.  X ) `  x
) ) )
104 eqid 2622 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
10513adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  N  e.  NN )
1061, 2, 104, 11, 105, 88dchr1 24982 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( 0g
`  G ) `  x )  =  1 )
10793, 103, 1063eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X  oF  x.  (
*  o.  X ) ) `  x )  =  ( ( 0g
`  G ) `  x ) )
10881, 107eqtrd 2656 . . . 4  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X ( +g  `  G
) ( *  o.  X ) ) `  x )  =  ( ( 0g `  G
) `  x )
)
109108ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  (Unit `  (ℤ/n `  N ) ) ( ( X ( +g  `  G ) ( *  o.  X ) ) `
 x )  =  ( ( 0g `  G ) `  x
) )
1101, 2, 3, 4, 5, 78dchrmulcl 24974 . . . 4  |-  ( ph  ->  ( X ( +g  `  G ) ( *  o.  X ) )  e.  D )
1111dchrabl 24979 . . . . . 6  |-  ( N  e.  NN  ->  G  e.  Abel )
112 ablgrp 18198 . . . . . 6  |-  ( G  e.  Abel  ->  G  e. 
Grp )
11313, 111, 1123syl 18 . . . . 5  |-  ( ph  ->  G  e.  Grp )
1143, 104grpidcl 17450 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  D )
115113, 114syl 17 . . . 4  |-  ( ph  ->  ( 0g `  G
)  e.  D )
1161, 2, 3, 11, 110, 115dchreq 24983 . . 3  |-  ( ph  ->  ( ( X ( +g  `  G ) ( *  o.  X
) )  =  ( 0g `  G )  <->  A. x  e.  (Unit `  (ℤ/n `  N ) ) ( ( X ( +g  `  G ) ( *  o.  X ) ) `
 x )  =  ( ( 0g `  G ) `  x
) ) )
117109, 116mpbird 247 . 2  |-  ( ph  ->  ( X ( +g  `  G ) ( *  o.  X ) )  =  ( 0g `  G ) )
118 dchrinv.i . . . 4  |-  I  =  ( invg `  G )
1193, 4, 104, 118grpinvid1 17470 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  D  /\  ( *  o.  X
)  e.  D )  ->  ( ( I `
 X )  =  ( *  o.  X
)  <->  ( X ( +g  `  G ) ( *  o.  X
) )  =  ( 0g `  G ) ) )
120113, 5, 78, 119syl3anc 1326 . 2  |-  ( ph  ->  ( ( I `  X )  =  ( *  o.  X )  <-> 
( X ( +g  `  G ) ( *  o.  X ) )  =  ( 0g `  G ) ) )
121117, 120mpbird 247 1  |-  ( ph  ->  ( I `  X
)  =  ( *  o.  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   2c2 11070   NN0cn0 11292   ^cexp 12860   *ccj 13836   abscabs 13974   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423   Abelcabl 18194   1rcur 18501   Ringcrg 18547   CRingccrg 18548  Unitcui 18639  ℤ/nczn 19851  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cntz 17750  df-od 17948  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-dchr 24958
This theorem is referenced by:  dchr2sum  24998  dchrisum0re  25202
  Copyright terms: Public domain W3C validator