Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem44 Structured version   Visualization version   Unicode version

Theorem etransclem44 40495
Description: The given finite sum is nonzero. This is the claim proved after equation (7) in [Juillerat] p. 12 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem44.a  |-  ( ph  ->  A : NN0 --> ZZ )
etransclem44.a0  |-  ( ph  ->  ( A `  0
)  =/=  0 )
etransclem44.m  |-  ( ph  ->  M  e.  NN0 )
etransclem44.p  |-  ( ph  ->  P  e.  Prime )
etransclem44.ap  |-  ( ph  ->  ( abs `  ( A `  0 )
)  <  P )
etransclem44.mp  |-  ( ph  ->  ( ! `  M
)  <  P )
etransclem44.f  |-  F  =  ( x  e.  RR  |->  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )
etransclem44.k  |-  K  =  ( sum_ k  e.  ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )
Assertion
Ref Expression
etransclem44  |-  ( ph  ->  K  =/=  0 )
Distinct variable groups:    x, k    A, k    k, F    j, M, k, x    P, j, k, x    ph, j,
k, x
Allowed substitution hints:    A( x, j)    F( x, j)    K( x, j, k)

Proof of Theorem etransclem44
Dummy variables  c 
d  n  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem44.k . . . 4  |-  K  =  ( sum_ k  e.  ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )
21a1i 11 . . 3  |-  ( ph  ->  K  =  ( sum_ k  e.  ( (
0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn F ) `
 ( 2nd `  k
) ) `  ( 1st `  k ) ) )  /  ( ! `
 ( P  - 
1 ) ) ) )
3 nfv 1843 . . . . 5  |-  F/ k
ph
4 nfcv 2764 . . . . 5  |-  F/_ k
( ( A ` 
0 )  x.  (
( ( RR  Dn F ) `  ( P  -  1
) ) `  0
) )
5 fzfi 12771 . . . . . . 7  |-  ( 0 ... M )  e. 
Fin
6 fzfi 12771 . . . . . . 7  |-  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) )  e. 
Fin
7 xpfi 8231 . . . . . . 7  |-  ( ( ( 0 ... M
)  e.  Fin  /\  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) )  e.  Fin )  ->  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) )  e.  Fin )
85, 6, 7mp2an 708 . . . . . 6  |-  ( ( 0 ... M )  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) )  e. 
Fin
98a1i 11 . . . . 5  |-  ( ph  ->  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) )  e.  Fin )
10 etransclem44.a . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> ZZ )
1110adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  A : NN0
--> ZZ )
12 fzssnn0 39533 . . . . . . . . . 10  |-  ( 0 ... M )  C_  NN0
13 xp1st 7198 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  ->  ( 1st `  k )  e.  ( 0 ... M
) )
1412, 13sseldi 3601 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  ->  ( 1st `  k )  e. 
NN0 )
1514adantl 482 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( 1st `  k )  e.  NN0 )
1611, 15ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( A `  ( 1st `  k
) )  e.  ZZ )
17 reelprrecn 10028 . . . . . . . . 9  |-  RR  e.  { RR ,  CC }
1817a1i 11 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  RR  e.  { RR ,  CC }
)
19 reopn 39501 . . . . . . . . . 10  |-  RR  e.  ( topGen `  ran  (,) )
20 eqid 2622 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2120tgioo2 22606 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
2219, 21eleqtri 2699 . . . . . . . . 9  |-  RR  e.  ( ( TopOpen ` fld )t  RR )
2322a1i 11 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  RR  e.  ( ( TopOpen ` fld )t  RR ) )
24 etransclem44.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  Prime )
25 prmnn 15388 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
2624, 25syl 17 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN )
2726adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  P  e.  NN )
28 etransclem44.m . . . . . . . . 9  |-  ( ph  ->  M  e.  NN0 )
2928adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  M  e.  NN0 )
30 etransclem44.f . . . . . . . 8  |-  F  =  ( x  e.  RR  |->  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )
31 xp2nd 7199 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  ->  ( 2nd `  k )  e.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )
32 elfznn0 12433 . . . . . . . . . 10  |-  ( ( 2nd `  k )  e.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) )  ->  ( 2nd `  k )  e. 
NN0 )
3331, 32syl 17 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  ->  ( 2nd `  k )  e. 
NN0 )
3433adantl 482 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( 2nd `  k )  e.  NN0 )
3515nn0red 11352 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( 1st `  k )  e.  RR )
3615nn0zd 11480 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( 1st `  k )  e.  ZZ )
3718, 23, 27, 29, 30, 34, 35, 36etransclem42 40493 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( (
( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) )  e.  ZZ )
3816, 37zmulcld 11488 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn F ) `
 ( 2nd `  k
) ) `  ( 1st `  k ) ) )  e.  ZZ )
3938zcnd 11483 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn F ) `
 ( 2nd `  k
) ) `  ( 1st `  k ) ) )  e.  CC )
40 nn0uz 11722 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
4128, 40syl6eleq 2711 . . . . . . 7  |-  ( ph  ->  M  e.  ( ZZ>= ` 
0 ) )
42 eluzfz1 12348 . . . . . . 7  |-  ( M  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... M
) )
4341, 42syl 17 . . . . . 6  |-  ( ph  ->  0  e.  ( 0 ... M ) )
44 0zd 11389 . . . . . . . . 9  |-  ( ph  ->  0  e.  ZZ )
4528nn0zd 11480 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
4626nnzd 11481 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ZZ )
4745, 46zmulcld 11488 . . . . . . . . . 10  |-  ( ph  ->  ( M  x.  P
)  e.  ZZ )
48 nnm1nn0 11334 . . . . . . . . . . . 12  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
4926, 48syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( P  -  1 )  e.  NN0 )
5049nn0zd 11480 . . . . . . . . . 10  |-  ( ph  ->  ( P  -  1 )  e.  ZZ )
5147, 50zaddcld 11486 . . . . . . . . 9  |-  ( ph  ->  ( ( M  x.  P )  +  ( P  -  1 ) )  e.  ZZ )
5244, 51, 503jca 1242 . . . . . . . 8  |-  ( ph  ->  ( 0  e.  ZZ  /\  ( ( M  x.  P )  +  ( P  -  1 ) )  e.  ZZ  /\  ( P  -  1
)  e.  ZZ ) )
5349nn0ge0d 11354 . . . . . . . 8  |-  ( ph  ->  0  <_  ( P  -  1 ) )
5426nnnn0d 11351 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  NN0 )
5528, 54nn0mulcld 11356 . . . . . . . . . 10  |-  ( ph  ->  ( M  x.  P
)  e.  NN0 )
5655nn0ge0d 11354 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( M  x.  P ) )
5749nn0red 11352 . . . . . . . . . 10  |-  ( ph  ->  ( P  -  1 )  e.  RR )
5847zred 11482 . . . . . . . . . 10  |-  ( ph  ->  ( M  x.  P
)  e.  RR )
5957, 58addge02d 10616 . . . . . . . . 9  |-  ( ph  ->  ( 0  <_  ( M  x.  P )  <->  ( P  -  1 )  <_  ( ( M  x.  P )  +  ( P  -  1 ) ) ) )
6056, 59mpbid 222 . . . . . . . 8  |-  ( ph  ->  ( P  -  1 )  <_  ( ( M  x.  P )  +  ( P  - 
1 ) ) )
6152, 53, 60jca32 558 . . . . . . 7  |-  ( ph  ->  ( ( 0  e.  ZZ  /\  ( ( M  x.  P )  +  ( P  - 
1 ) )  e.  ZZ  /\  ( P  -  1 )  e.  ZZ )  /\  (
0  <_  ( P  -  1 )  /\  ( P  -  1
)  <_  ( ( M  x.  P )  +  ( P  - 
1 ) ) ) ) )
62 elfz2 12333 . . . . . . 7  |-  ( ( P  -  1 )  e.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) )  <->  ( (
0  e.  ZZ  /\  ( ( M  x.  P )  +  ( P  -  1 ) )  e.  ZZ  /\  ( P  -  1
)  e.  ZZ )  /\  ( 0  <_ 
( P  -  1 )  /\  ( P  -  1 )  <_ 
( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )
6361, 62sylibr 224 . . . . . 6  |-  ( ph  ->  ( P  -  1 )  e.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) )
64 opelxp 5146 . . . . . 6  |-  ( <.
0 ,  ( P  -  1 ) >.  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) )  <-> 
( 0  e.  ( 0 ... M )  /\  ( P  - 
1 )  e.  ( 0 ... ( ( M  x.  P )  +  ( P  - 
1 ) ) ) ) )
6543, 63, 64sylanbrc 698 . . . . 5  |-  ( ph  -> 
<. 0 ,  ( P  -  1 )
>.  e.  ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) ) )
66 fveq2 6191 . . . . . . . 8  |-  ( k  =  <. 0 ,  ( P  -  1 )
>.  ->  ( 1st `  k
)  =  ( 1st `  <. 0 ,  ( P  -  1 )
>. ) )
67 0re 10040 . . . . . . . . 9  |-  0  e.  RR
68 ovex 6678 . . . . . . . . 9  |-  ( P  -  1 )  e. 
_V
69 op1stg 7180 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( P  -  1
)  e.  _V )  ->  ( 1st `  <. 0 ,  ( P  -  1 ) >.
)  =  0 )
7067, 68, 69mp2an 708 . . . . . . . 8  |-  ( 1st `  <. 0 ,  ( P  -  1 )
>. )  =  0
7166, 70syl6eq 2672 . . . . . . 7  |-  ( k  =  <. 0 ,  ( P  -  1 )
>.  ->  ( 1st `  k
)  =  0 )
7271fveq2d 6195 . . . . . 6  |-  ( k  =  <. 0 ,  ( P  -  1 )
>.  ->  ( A `  ( 1st `  k ) )  =  ( A `
 0 ) )
73 fveq2 6191 . . . . . . . . 9  |-  ( k  =  <. 0 ,  ( P  -  1 )
>.  ->  ( 2nd `  k
)  =  ( 2nd `  <. 0 ,  ( P  -  1 )
>. ) )
74 op2ndg 7181 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( P  -  1
)  e.  _V )  ->  ( 2nd `  <. 0 ,  ( P  -  1 ) >.
)  =  ( P  -  1 ) )
7567, 68, 74mp2an 708 . . . . . . . . 9  |-  ( 2nd `  <. 0 ,  ( P  -  1 )
>. )  =  ( P  -  1 )
7673, 75syl6eq 2672 . . . . . . . 8  |-  ( k  =  <. 0 ,  ( P  -  1 )
>.  ->  ( 2nd `  k
)  =  ( P  -  1 ) )
7776fveq2d 6195 . . . . . . 7  |-  ( k  =  <. 0 ,  ( P  -  1 )
>.  ->  ( ( RR  Dn F ) `
 ( 2nd `  k
) )  =  ( ( RR  Dn
F ) `  ( P  -  1 ) ) )
7877, 71fveq12d 6197 . . . . . 6  |-  ( k  =  <. 0 ,  ( P  -  1 )
>.  ->  ( ( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) )  =  ( ( ( RR  Dn
F ) `  ( P  -  1 ) ) `  0 ) )
7972, 78oveq12d 6668 . . . . 5  |-  ( k  =  <. 0 ,  ( P  -  1 )
>.  ->  ( ( A `
 ( 1st `  k
) )  x.  (
( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) ) )  =  ( ( A `
 0 )  x.  ( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 ) ) )
803, 4, 9, 39, 65, 79fsumsplit1 39804 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  =  ( ( ( A `
 0 )  x.  ( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 ) )  + 
sum_ k  e.  ( ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) ) ) )
8180oveq1d 6665 . . 3  |-  ( ph  ->  ( sum_ k  e.  ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )  =  ( ( ( ( A `
 0 )  x.  ( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 ) )  + 
sum_ k  e.  ( ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) ) )  /  ( ! `  ( P  -  1
) ) ) )
8212, 43sseldi 3601 . . . . . . 7  |-  ( ph  ->  0  e.  NN0 )
8310, 82ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( A `  0
)  e.  ZZ )
8417a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  { RR ,  CC } )
8522a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  ( (
TopOpen ` fld )t  RR ) )
8667a1i 11 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
8784, 85, 26, 28, 30, 49, 86, 44etransclem42 40493 . . . . . 6  |-  ( ph  ->  ( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 )  e.  ZZ )
8883, 87zmulcld 11488 . . . . 5  |-  ( ph  ->  ( ( A ` 
0 )  x.  (
( ( RR  Dn F ) `  ( P  -  1
) ) `  0
) )  e.  ZZ )
8988zcnd 11483 . . . 4  |-  ( ph  ->  ( ( A ` 
0 )  x.  (
( ( RR  Dn F ) `  ( P  -  1
) ) `  0
) )  e.  CC )
90 difss 3737 . . . . . . . 8  |-  ( ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) 
C_  ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )
91 ssfi 8180 . . . . . . . 8  |-  ( ( ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) )  e.  Fin  /\  (
( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) 
C_  ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) ) )  -> 
( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } )  e.  Fin )
928, 90, 91mp2an 708 . . . . . . 7  |-  ( ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } )  e.  Fin
9392a1i 11 . . . . . 6  |-  ( ph  ->  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } )  e.  Fin )
94 eldifi 3732 . . . . . . 7  |-  ( k  e.  ( ( ( 0 ... M )  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 )
>. } )  ->  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )
9594, 38sylan2 491 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  e.  ZZ )
9693, 95fsumzcl 14466 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  e.  ZZ )
9796zcnd 11483 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  e.  CC )
9849faccld 13071 . . . . 5  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  e.  NN )
9998nncnd 11036 . . . 4  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  e.  CC )
10098nnne0d 11065 . . . 4  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  =/=  0 )
10189, 97, 99, 100divdird 10839 . . 3  |-  ( ph  ->  ( ( ( ( A `  0 )  x.  ( ( ( RR  Dn F ) `  ( P  -  1 ) ) `
 0 ) )  +  sum_ k  e.  ( ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) ) )  /  ( ! `  ( P  -  1
) ) )  =  ( ( ( ( A `  0 )  x.  ( ( ( RR  Dn F ) `  ( P  -  1 ) ) `
 0 ) )  /  ( ! `  ( P  -  1
) ) )  +  ( sum_ k  e.  ( ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) ) ) )
1022, 81, 1013eqtrd 2660 . 2  |-  ( ph  ->  K  =  ( ( ( ( A ` 
0 )  x.  (
( ( RR  Dn F ) `  ( P  -  1
) ) `  0
) )  /  ( ! `  ( P  -  1 ) ) )  +  ( sum_ k  e.  ( (
( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) ) ) )
10326nnne0d 11065 . . 3  |-  ( ph  ->  P  =/=  0 )
10483zcnd 11483 . . . . 5  |-  ( ph  ->  ( A `  0
)  e.  CC )
10587zcnd 11483 . . . . 5  |-  ( ph  ->  ( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 )  e.  CC )
106104, 105, 99, 100divassd 10836 . . . 4  |-  ( ph  ->  ( ( ( A `
 0 )  x.  ( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 ) )  / 
( ! `  ( P  -  1 ) ) )  =  ( ( A `  0
)  x.  ( ( ( ( RR  Dn F ) `  ( P  -  1
) ) `  0
)  /  ( ! `
 ( P  - 
1 ) ) ) ) )
107 etransclem5 40456 . . . . . . 7  |-  ( k  e.  ( 0 ... M )  |->  ( y  e.  RR  |->  ( ( y  -  k ) ^ if ( k  =  0 ,  ( P  -  1 ) ,  P ) ) ) )  =  ( j  e.  ( 0 ... M )  |->  ( x  e.  RR  |->  ( ( x  -  j
) ^ if ( j  =  0 ,  ( P  -  1 ) ,  P ) ) ) )
108 etransclem11 40462 . . . . . . 7  |-  ( m  e.  NN0  |->  { d  e.  ( ( 0 ... m )  ^m  ( 0 ... M
) )  |  sum_ k  e.  ( 0 ... M ) ( d `  k )  =  m } )  =  ( n  e. 
NN0  |->  { c  e.  ( ( 0 ... n )  ^m  (
0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  n }
)
10984, 85, 26, 28, 30, 49, 107, 108, 43, 86etransclem37 40488 . . . . . 6  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  ||  ( ( ( RR  Dn
F ) `  ( P  -  1 ) ) `  0 ) )
11098nnzd 11481 . . . . . . 7  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  e.  ZZ )
111 dvdsval2 14986 . . . . . . 7  |-  ( ( ( ! `  ( P  -  1 ) )  e.  ZZ  /\  ( ! `  ( P  -  1 ) )  =/=  0  /\  (
( ( RR  Dn F ) `  ( P  -  1
) ) `  0
)  e.  ZZ )  ->  ( ( ! `
 ( P  - 
1 ) )  ||  ( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 )  <->  ( (
( ( RR  Dn F ) `  ( P  -  1
) ) `  0
)  /  ( ! `
 ( P  - 
1 ) ) )  e.  ZZ ) )
112110, 100, 87, 111syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( ! `  ( P  -  1
) )  ||  (
( ( RR  Dn F ) `  ( P  -  1
) ) `  0
)  <->  ( ( ( ( RR  Dn
F ) `  ( P  -  1 ) ) `  0 )  /  ( ! `  ( P  -  1
) ) )  e.  ZZ ) )
113109, 112mpbid 222 . . . . 5  |-  ( ph  ->  ( ( ( ( RR  Dn F ) `  ( P  -  1 ) ) `
 0 )  / 
( ! `  ( P  -  1 ) ) )  e.  ZZ )
11483, 113zmulcld 11488 . . . 4  |-  ( ph  ->  ( ( A ` 
0 )  x.  (
( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 )  /  ( ! `  ( P  -  1 ) ) ) )  e.  ZZ )
115106, 114eqeltrd 2701 . . 3  |-  ( ph  ->  ( ( ( A `
 0 )  x.  ( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 ) )  / 
( ! `  ( P  -  1 ) ) )  e.  ZZ )
11694, 39sylan2 491 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  e.  CC )
11793, 99, 116, 100fsumdivc 14518 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )  =  sum_ k  e.  ( (
( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) ( ( ( A `
 ( 1st `  k
) )  x.  (
( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) ) )  /  ( ! `  ( P  -  1
) ) ) )
11816zcnd 11483 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( A `  ( 1st `  k
) )  e.  CC )
11994, 118sylan2 491 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( A `  ( 1st `  k ) )  e.  CC )
12094, 37sylan2 491 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( ( ( RR  Dn F ) `
 ( 2nd `  k
) ) `  ( 1st `  k ) )  e.  ZZ )
121120zcnd 11483 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( ( ( RR  Dn F ) `
 ( 2nd `  k
) ) `  ( 1st `  k ) )  e.  CC )
12299adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( ! `  ( P  -  1 ) )  e.  CC )
123100adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( ! `  ( P  -  1 ) )  =/=  0 )
124119, 121, 122, 123divassd 10836 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( ( ( A `
 ( 1st `  k
) )  x.  (
( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) ) )  /  ( ! `  ( P  -  1
) ) )  =  ( ( A `  ( 1st `  k ) )  x.  ( ( ( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) )  / 
( ! `  ( P  -  1 ) ) ) ) )
12594, 16sylan2 491 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( A `  ( 1st `  k ) )  e.  ZZ )
12617a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  ->  RR  e.  { RR ,  CC } )
12722a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  ->  RR  e.  ( ( TopOpen ` fld )t  RR ) )
12826adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  ->  P  e.  NN )
12928adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  ->  M  e.  NN0 )
13094adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
k  e.  ( ( 0 ... M )  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )
131130, 33syl 17 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( 2nd `  k
)  e.  NN0 )
132130, 13syl 17 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( 1st `  k
)  e.  ( 0 ... M ) )
13394, 35sylan2 491 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( 1st `  k
)  e.  RR )
134126, 127, 128, 129, 30, 131, 107, 108, 132, 133etransclem37 40488 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( ! `  ( P  -  1 ) )  ||  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )
135110adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( ! `  ( P  -  1 ) )  e.  ZZ )
136 dvdsval2 14986 . . . . . . . . 9  |-  ( ( ( ! `  ( P  -  1 ) )  e.  ZZ  /\  ( ! `  ( P  -  1 ) )  =/=  0  /\  (
( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) )  e.  ZZ )  ->  (
( ! `  ( P  -  1 ) )  ||  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) )  <->  ( (
( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) )  / 
( ! `  ( P  -  1 ) ) )  e.  ZZ ) )
137135, 123, 120, 136syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( ( ! `  ( P  -  1
) )  ||  (
( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) )  <->  ( (
( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) )  / 
( ! `  ( P  -  1 ) ) )  e.  ZZ ) )
138134, 137mpbid 222 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( ( ( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) )  /  ( ! `
 ( P  - 
1 ) ) )  e.  ZZ )
139125, 138zmulcld 11488 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( ( A `  ( 1st `  k ) )  x.  ( ( ( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) )  / 
( ! `  ( P  -  1 ) ) ) )  e.  ZZ )
140124, 139eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( ( ( A `
 ( 1st `  k
) )  x.  (
( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) ) )  /  ( ! `  ( P  -  1
) ) )  e.  ZZ )
14193, 140fsumzcl 14466 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) ( ( ( A `
 ( 1st `  k
) )  x.  (
( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) ) )  /  ( ! `  ( P  -  1
) ) )  e.  ZZ )
142117, 141eqeltrd 2701 . . 3  |-  ( ph  ->  ( sum_ k  e.  ( ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )  e.  ZZ )
143 1zzd 11408 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  ZZ )
144 zabscl 14053 . . . . . . . . . . . . 13  |-  ( ( A `  0 )  e.  ZZ  ->  ( abs `  ( A ` 
0 ) )  e.  ZZ )
14583, 144syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A `  0 )
)  e.  ZZ )
146143, 50, 1453jca 1242 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  e.  ZZ  /\  ( P  -  1 )  e.  ZZ  /\  ( abs `  ( A `
 0 ) )  e.  ZZ ) )
147 nn0abscl 14052 . . . . . . . . . . . . . 14  |-  ( ( A `  0 )  e.  ZZ  ->  ( abs `  ( A ` 
0 ) )  e. 
NN0 )
14883, 147syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( A `  0 )
)  e.  NN0 )
149 etransclem44.a0 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A `  0
)  =/=  0 )
150104, 149absne0d 14186 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( A `  0 )
)  =/=  0 )
151 elnnne0 11306 . . . . . . . . . . . . 13  |-  ( ( abs `  ( A `
 0 ) )  e.  NN  <->  ( ( abs `  ( A ` 
0 ) )  e. 
NN0  /\  ( abs `  ( A `  0
) )  =/=  0
) )
152148, 150, 151sylanbrc 698 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A `  0 )
)  e.  NN )
153152nnge1d 11063 . . . . . . . . . . 11  |-  ( ph  ->  1  <_  ( abs `  ( A `  0
) ) )
154 etransclem44.ap . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A `  0 )
)  <  P )
155 zltlem1 11430 . . . . . . . . . . . . 13  |-  ( ( ( abs `  ( A `  0 )
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( abs `  ( A `  0 )
)  <  P  <->  ( abs `  ( A `  0
) )  <_  ( P  -  1 ) ) )
156145, 46, 155syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( abs `  ( A `  0 )
)  <  P  <->  ( abs `  ( A `  0
) )  <_  ( P  -  1 ) ) )
157154, 156mpbid 222 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  ( A `  0 )
)  <_  ( P  -  1 ) )
158146, 153, 157jca32 558 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  e.  ZZ  /\  ( P  -  1 )  e.  ZZ  /\  ( abs `  ( A `  0
) )  e.  ZZ )  /\  ( 1  <_ 
( abs `  ( A `  0 )
)  /\  ( abs `  ( A `  0
) )  <_  ( P  -  1 ) ) ) )
159 elfz2 12333 . . . . . . . . . 10  |-  ( ( abs `  ( A `
 0 ) )  e.  ( 1 ... ( P  -  1 ) )  <->  ( (
1  e.  ZZ  /\  ( P  -  1
)  e.  ZZ  /\  ( abs `  ( A `
 0 ) )  e.  ZZ )  /\  ( 1  <_  ( abs `  ( A ` 
0 ) )  /\  ( abs `  ( A `
 0 ) )  <_  ( P  - 
1 ) ) ) )
160158, 159sylibr 224 . . . . . . . . 9  |-  ( ph  ->  ( abs `  ( A `  0 )
)  e.  ( 1 ... ( P  - 
1 ) ) )
161 fzm1ndvds 15044 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  ( abs `  ( A `
 0 ) )  e.  ( 1 ... ( P  -  1 ) ) )  ->  -.  P  ||  ( abs `  ( A `  0
) ) )
16226, 160, 161syl2anc 693 . . . . . . . 8  |-  ( ph  ->  -.  P  ||  ( abs `  ( A ` 
0 ) ) )
163 dvdsabsb 15001 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( A `  0 )  e.  ZZ )  -> 
( P  ||  ( A `  0 )  <->  P 
||  ( abs `  ( A `  0 )
) ) )
16446, 83, 163syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( P  ||  ( A `  0 )  <->  P 
||  ( abs `  ( A `  0 )
) ) )
165162, 164mtbird 315 . . . . . . 7  |-  ( ph  ->  -.  P  ||  ( A `  0 )
)
166 etransclem44.mp . . . . . . . 8  |-  ( ph  ->  ( ! `  M
)  <  P )
16728, 24, 166, 30etransclem41 40492 . . . . . . 7  |-  ( ph  ->  -.  P  ||  (
( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 )  /  ( ! `  ( P  -  1 ) ) ) )
168165, 167jca 554 . . . . . 6  |-  ( ph  ->  ( -.  P  ||  ( A `  0 )  /\  -.  P  ||  ( ( ( ( RR  Dn F ) `  ( P  -  1 ) ) `
 0 )  / 
( ! `  ( P  -  1 ) ) ) ) )
169 pm4.56 516 . . . . . 6  |-  ( ( -.  P  ||  ( A `  0 )  /\  -.  P  ||  (
( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 )  /  ( ! `  ( P  -  1 ) ) ) )  <->  -.  ( P  ||  ( A ` 
0 )  \/  P  ||  ( ( ( ( RR  Dn F ) `  ( P  -  1 ) ) `
 0 )  / 
( ! `  ( P  -  1 ) ) ) ) )
170168, 169sylib 208 . . . . 5  |-  ( ph  ->  -.  ( P  ||  ( A `  0 )  \/  P  ||  (
( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 )  /  ( ! `  ( P  -  1 ) ) ) ) )
171 euclemma 15425 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A `  0 )  e.  ZZ  /\  ( ( ( ( RR  Dn F ) `  ( P  -  1
) ) `  0
)  /  ( ! `
 ( P  - 
1 ) ) )  e.  ZZ )  -> 
( P  ||  (
( A `  0
)  x.  ( ( ( ( RR  Dn F ) `  ( P  -  1
) ) `  0
)  /  ( ! `
 ( P  - 
1 ) ) ) )  <->  ( P  ||  ( A `  0 )  \/  P  ||  (
( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 )  /  ( ! `  ( P  -  1 ) ) ) ) ) )
17224, 83, 113, 171syl3anc 1326 . . . . 5  |-  ( ph  ->  ( P  ||  (
( A `  0
)  x.  ( ( ( ( RR  Dn F ) `  ( P  -  1
) ) `  0
)  /  ( ! `
 ( P  - 
1 ) ) ) )  <->  ( P  ||  ( A `  0 )  \/  P  ||  (
( ( ( RR  Dn F ) `
 ( P  - 
1 ) ) ` 
0 )  /  ( ! `  ( P  -  1 ) ) ) ) ) )
173170, 172mtbird 315 . . . 4  |-  ( ph  ->  -.  P  ||  (
( A `  0
)  x.  ( ( ( ( RR  Dn F ) `  ( P  -  1
) ) `  0
)  /  ( ! `
 ( P  - 
1 ) ) ) ) )
174106breq2d 4665 . . . 4  |-  ( ph  ->  ( P  ||  (
( ( A ` 
0 )  x.  (
( ( RR  Dn F ) `  ( P  -  1
) ) `  0
) )  /  ( ! `  ( P  -  1 ) ) )  <->  P  ||  ( ( A `  0 )  x.  ( ( ( ( RR  Dn
F ) `  ( P  -  1 ) ) `  0 )  /  ( ! `  ( P  -  1
) ) ) ) ) )
175173, 174mtbird 315 . . 3  |-  ( ph  ->  -.  P  ||  (
( ( A ` 
0 )  x.  (
( ( RR  Dn F ) `  ( P  -  1
) ) `  0
) )  /  ( ! `  ( P  -  1 ) ) ) )
17646adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  ->  P  e.  ZZ )
177176, 125, 1383jca 1242 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  -> 
( P  e.  ZZ  /\  ( A `  ( 1st `  k ) )  e.  ZZ  /\  (
( ( ( RR  Dn F ) `
 ( 2nd `  k
) ) `  ( 1st `  k ) )  /  ( ! `  ( P  -  1
) ) )  e.  ZZ ) )
178 eldifn 3733 . . . . . . . . . 10  |-  ( k  e.  ( ( ( 0 ... M )  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 )
>. } )  ->  -.  k  e.  { <. 0 ,  ( P  - 
1 ) >. } )
17994adantr 481 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } )  /\  ( ( 2nd `  k )  =  ( P  -  1 )  /\  ( 1st `  k
)  =  0 ) )  ->  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )
180 1st2nd2 7205 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  ->  k  =  <. ( 1st `  k
) ,  ( 2nd `  k ) >. )
181179, 180syl 17 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } )  /\  ( ( 2nd `  k )  =  ( P  -  1 )  /\  ( 1st `  k
)  =  0 ) )  ->  k  =  <. ( 1st `  k
) ,  ( 2nd `  k ) >. )
182 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  k
)  =  ( P  -  1 )  /\  ( 1st `  k )  =  0 )  -> 
( 1st `  k
)  =  0 )
183 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  k
)  =  ( P  -  1 )  /\  ( 1st `  k )  =  0 )  -> 
( 2nd `  k
)  =  ( P  -  1 ) )
184182, 183opeq12d 4410 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  k
)  =  ( P  -  1 )  /\  ( 1st `  k )  =  0 )  ->  <. ( 1st `  k
) ,  ( 2nd `  k ) >.  =  <. 0 ,  ( P  -  1 ) >.
)
185184adantl 482 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } )  /\  ( ( 2nd `  k )  =  ( P  -  1 )  /\  ( 1st `  k
)  =  0 ) )  ->  <. ( 1st `  k ) ,  ( 2nd `  k )
>.  =  <. 0 ,  ( P  -  1 ) >. )
186181, 185eqtrd 2656 . . . . . . . . . . 11  |-  ( ( k  e.  ( ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } )  /\  ( ( 2nd `  k )  =  ( P  -  1 )  /\  ( 1st `  k
)  =  0 ) )  ->  k  =  <. 0 ,  ( P  -  1 ) >.
)
187 velsn 4193 . . . . . . . . . . 11  |-  ( k  e.  { <. 0 ,  ( P  - 
1 ) >. }  <->  k  =  <. 0 ,  ( P  -  1 ) >.
)
188186, 187sylibr 224 . . . . . . . . . 10  |-  ( ( k  e.  ( ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } )  /\  ( ( 2nd `  k )  =  ( P  -  1 )  /\  ( 1st `  k
)  =  0 ) )  ->  k  e.  {
<. 0 ,  ( P  -  1 )
>. } )
189178, 188mtand 691 . . . . . . . . 9  |-  ( k  e.  ( ( ( 0 ... M )  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 )
>. } )  ->  -.  ( ( 2nd `  k
)  =  ( P  -  1 )  /\  ( 1st `  k )  =  0 ) )
190189adantl 482 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  ->  -.  ( ( 2nd `  k
)  =  ( P  -  1 )  /\  ( 1st `  k )  =  0 ) )
191128, 129, 30, 131, 132, 190, 108etransclem38 40489 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  ->  P  ||  ( ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) )  /  ( ! `  ( P  -  1 ) ) ) )
192 dvdsmultr2 15021 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( A `  ( 1st `  k ) )  e.  ZZ  /\  ( ( ( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) )  / 
( ! `  ( P  -  1 ) ) )  e.  ZZ )  ->  ( P  ||  ( ( ( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) )  /  ( ! `
 ( P  - 
1 ) ) )  ->  P  ||  (
( A `  ( 1st `  k ) )  x.  ( ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) )  /  ( ! `  ( P  -  1 ) ) ) ) ) )
193177, 191, 192sylc 65 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  ->  P  ||  ( ( A `
 ( 1st `  k
) )  x.  (
( ( ( RR  Dn F ) `
 ( 2nd `  k
) ) `  ( 1st `  k ) )  /  ( ! `  ( P  -  1
) ) ) ) )
194193, 124breqtrrd 4681 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) )  ->  P  ||  ( ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn F ) `
 ( 2nd `  k
) ) `  ( 1st `  k ) ) )  /  ( ! `
 ( P  - 
1 ) ) ) )
19593, 46, 140, 194fsumdvds 15030 . . . 4  |-  ( ph  ->  P  ||  sum_ k  e.  ( ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  \  { <. 0 ,  ( P  -  1 ) >. } ) ( ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) ) )  /  ( ! `  ( P  -  1 ) ) ) )
196195, 117breqtrrd 4681 . . 3  |-  ( ph  ->  P  ||  ( sum_ k  e.  ( (
( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) ) )
19746, 103, 115, 142, 175, 196etransclem9 40460 . 2  |-  ( ph  ->  ( ( ( ( A `  0 )  x.  ( ( ( RR  Dn F ) `  ( P  -  1 ) ) `
 0 ) )  /  ( ! `  ( P  -  1
) ) )  +  ( sum_ k  e.  ( ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) 
\  { <. 0 ,  ( P  - 
1 ) >. } ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) ) )  =/=  0 )
198102, 197eqnetrd 2861 1  |-  ( ph  ->  K  =/=  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   (,)cioo 12175   ...cfz 12326   ^cexp 12860   !cfa 13060   abscabs 13974   sum_csu 14416   prod_cprod 14635    || cdvds 14983   Primecprime 15385   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746    Dncdvn 23628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-dvds 14984  df-gcd 15217  df-prm 15386  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-dvn 23632
This theorem is referenced by:  etransclem47  40498
  Copyright terms: Public domain W3C validator