MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  loglesqrt Structured version   Visualization version   Unicode version

Theorem loglesqrt 24499
Description: An upper bound on the logarithm. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
loglesqrt  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log `  ( A  +  1 ) )  <_  ( sqr `  A ) )

Proof of Theorem loglesqrt
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 10040 . . . 4  |-  0  e.  RR
21a1i 11 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  e.  RR )
3 simpl 473 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  RR )
4 elicc2 12238 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( x  e.  ( 0 [,] A )  <-> 
( x  e.  RR  /\  0  <_  x  /\  x  <_  A ) ) )
51, 3, 4sylancr 695 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A )  <-> 
( x  e.  RR  /\  0  <_  x  /\  x  <_  A ) ) )
65biimpa 501 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 [,] A ) )  ->  ( x  e.  RR  /\  0  <_  x  /\  x  <_  A
) )
76simp1d 1073 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 [,] A ) )  ->  x  e.  RR )
86simp2d 1074 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 [,] A ) )  ->  0  <_  x )
97, 8ge0p1rpd 11902 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 [,] A ) )  ->  ( x  +  1 )  e.  RR+ )
109fvresd 6208 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 [,] A ) )  ->  ( ( log  |`  RR+ ) `  (
x  +  1 ) )  =  ( log `  ( x  +  1 ) ) )
1110mpteq2dva 4744 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( ( log  |`  RR+ ) `  ( x  +  1 ) ) )  =  ( x  e.  ( 0 [,] A ) 
|->  ( log `  (
x  +  1 ) ) ) )
12 eqid 2622 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1312cnfldtopon 22586 . . . . . . 7  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
147ex 450 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A )  ->  x  e.  RR ) )
1514ssrdv 3609 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 0 [,] A
)  C_  RR )
16 ax-resscn 9993 . . . . . . . 8  |-  RR  C_  CC
1715, 16syl6ss 3615 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 0 [,] A
)  C_  CC )
18 resttopon 20965 . . . . . . 7  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  (
0 [,] A ) 
C_  CC )  -> 
( ( TopOpen ` fld )t  ( 0 [,] A ) )  e.  (TopOn `  ( 0 [,] A ) ) )
1913, 17, 18sylancr 695 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( TopOpen ` fld )t  ( 0 [,] A ) )  e.  (TopOn `  ( 0 [,] A ) ) )
20 eqid 2622 . . . . . . . . 9  |-  ( x  e.  ( 0 [,] A )  |->  ( x  +  1 ) )  =  ( x  e.  ( 0 [,] A
)  |->  ( x  + 
1 ) )
219, 20fmptd 6385 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( x  +  1 ) ) : ( 0 [,] A ) -->
RR+ )
22 rpssre 11843 . . . . . . . . . 10  |-  RR+  C_  RR
2322, 16sstri 3612 . . . . . . . . 9  |-  RR+  C_  CC
2412addcn 22668 . . . . . . . . . . 11  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
2524a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  +  e.  ( (
( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
26 ssid 3624 . . . . . . . . . . 11  |-  CC  C_  CC
27 cncfmptid 22715 . . . . . . . . . . 11  |-  ( ( ( 0 [,] A
)  C_  CC  /\  CC  C_  CC )  ->  (
x  e.  ( 0 [,] A )  |->  x )  e.  ( ( 0 [,] A )
-cn-> CC ) )
2817, 26, 27sylancl 694 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  x )  e.  ( ( 0 [,] A
) -cn-> CC ) )
29 1cnd 10056 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
1  e.  CC )
3026a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  CC  C_  CC )
31 cncfmptc 22714 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( 0 [,] A
)  C_  CC  /\  CC  C_  CC )  ->  (
x  e.  ( 0 [,] A )  |->  1 )  e.  ( ( 0 [,] A )
-cn-> CC ) )
3229, 17, 30, 31syl3anc 1326 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  1 )  e.  ( ( 0 [,] A
) -cn-> CC ) )
3312, 25, 28, 32cncfmpt2f 22717 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( x  +  1 ) )  e.  ( ( 0 [,] A
) -cn-> CC ) )
34 cncffvrn 22701 . . . . . . . . 9  |-  ( (
RR+  C_  CC  /\  (
x  e.  ( 0 [,] A )  |->  ( x  +  1 ) )  e.  ( ( 0 [,] A )
-cn-> CC ) )  -> 
( ( x  e.  ( 0 [,] A
)  |->  ( x  + 
1 ) )  e.  ( ( 0 [,] A ) -cn-> RR+ )  <->  ( x  e.  ( 0 [,] A )  |->  ( x  +  1 ) ) : ( 0 [,] A ) --> RR+ ) )
3523, 33, 34sylancr 695 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( x  e.  ( 0 [,] A
)  |->  ( x  + 
1 ) )  e.  ( ( 0 [,] A ) -cn-> RR+ )  <->  ( x  e.  ( 0 [,] A )  |->  ( x  +  1 ) ) : ( 0 [,] A ) --> RR+ ) )
3621, 35mpbird 247 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( x  +  1 ) )  e.  ( ( 0 [,] A
) -cn-> RR+ ) )
37 eqid 2622 . . . . . . . . 9  |-  ( (
TopOpen ` fld )t  ( 0 [,] A
) )  =  ( ( TopOpen ` fld )t  ( 0 [,] A ) )
38 eqid 2622 . . . . . . . . 9  |-  ( (
TopOpen ` fld )t 
RR+ )  =  ( ( TopOpen ` fld )t  RR+ )
3912, 37, 38cncfcn 22712 . . . . . . . 8  |-  ( ( ( 0 [,] A
)  C_  CC  /\  RR+  C_  CC )  ->  ( ( 0 [,] A ) -cn-> RR+ )  =  ( (
( TopOpen ` fld )t  ( 0 [,] A ) )  Cn  ( ( TopOpen ` fld )t  RR+ ) ) )
4017, 23, 39sylancl 694 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( 0 [,] A ) -cn-> RR+ )  =  ( ( (
TopOpen ` fld )t  ( 0 [,] A
) )  Cn  (
( TopOpen ` fld )t  RR+ ) ) )
4136, 40eleqtrd 2703 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( x  +  1 ) )  e.  ( ( ( TopOpen ` fld )t  ( 0 [,] A ) )  Cn  ( ( TopOpen ` fld )t  RR+ ) ) )
42 relogcn 24384 . . . . . . . 8  |-  ( log  |`  RR+ )  e.  (
RR+ -cn-> RR )
43 eqid 2622 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  RR )  =  ( ( TopOpen ` fld )t  RR )
4412, 38, 43cncfcn 22712 . . . . . . . . 9  |-  ( (
RR+  C_  CC  /\  RR  C_  CC )  ->  ( RR+ -cn-> RR )  =  ( ( ( TopOpen ` fld )t  RR+ )  Cn  (
( TopOpen ` fld )t  RR ) ) )
4523, 16, 44mp2an 708 . . . . . . . 8  |-  ( RR+ -cn-> RR )  =  ( ( ( TopOpen ` fld )t  RR+ )  Cn  (
( TopOpen ` fld )t  RR ) )
4642, 45eleqtri 2699 . . . . . . 7  |-  ( log  |`  RR+ )  e.  ( ( ( TopOpen ` fld )t  RR+ )  Cn  (
( TopOpen ` fld )t  RR ) )
4746a1i 11 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log  |`  RR+ )  e.  ( ( ( TopOpen ` fld )t  RR+ )  Cn  ( ( TopOpen ` fld )t  RR ) ) )
4819, 41, 47cnmpt11f 21467 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( ( log  |`  RR+ ) `  ( x  +  1 ) ) )  e.  ( ( ( TopOpen ` fld )t  (
0 [,] A ) )  Cn  ( (
TopOpen ` fld )t  RR ) ) )
4912, 37, 43cncfcn 22712 . . . . . 6  |-  ( ( ( 0 [,] A
)  C_  CC  /\  RR  C_  CC )  ->  (
( 0 [,] A
) -cn-> RR )  =  ( ( ( TopOpen ` fld )t  ( 0 [,] A ) )  Cn  ( ( TopOpen ` fld )t  RR ) ) )
5017, 16, 49sylancl 694 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( 0 [,] A ) -cn-> RR )  =  ( ( (
TopOpen ` fld )t  ( 0 [,] A
) )  Cn  (
( TopOpen ` fld )t  RR ) ) )
5148, 50eleqtrrd 2704 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( ( log  |`  RR+ ) `  ( x  +  1 ) ) )  e.  ( ( 0 [,] A ) -cn-> RR ) )
5211, 51eqeltrrd 2702 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( log `  (
x  +  1 ) ) )  e.  ( ( 0 [,] A
) -cn-> RR ) )
53 reelprrecn 10028 . . . . 5  |-  RR  e.  { RR ,  CC }
5453a1i 11 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  RR  e.  { RR ,  CC } )
55 simpr 477 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  x  e.  RR+ )
56 1rp 11836 . . . . . . 7  |-  1  e.  RR+
57 rpaddcl 11854 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  e.  RR+ )  ->  (
x  +  1 )  e.  RR+ )
5855, 56, 57sylancl 694 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( x  +  1 )  e.  RR+ )
5958relogcld 24369 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( log `  (
x  +  1 ) )  e.  RR )
6059recnd 10068 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( log `  (
x  +  1 ) )  e.  CC )
6158rpreccld 11882 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 1  /  (
x  +  1 ) )  e.  RR+ )
62 1cnd 10056 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  1  e.  CC )
63 relogcl 24322 . . . . . . . 8  |-  ( y  e.  RR+  ->  ( log `  y )  e.  RR )
6463adantl 482 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR+ )  ->  ( log `  y
)  e.  RR )
6564recnd 10068 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR+ )  ->  ( log `  y
)  e.  CC )
66 rpreccl 11857 . . . . . . 7  |-  ( y  e.  RR+  ->  ( 1  /  y )  e.  RR+ )
6766adantl 482 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR+ )  ->  ( 1  /  y
)  e.  RR+ )
68 peano2re 10209 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
6968adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR )  ->  ( x  + 
1 )  e.  RR )
7069recnd 10068 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR )  ->  ( x  + 
1 )  e.  CC )
71 1cnd 10056 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR )  ->  1  e.  CC )
7216a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  RR  C_  CC )
7372sselda 3603 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR )  ->  x  e.  CC )
7454dvmptid 23720 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR  |->  x ) )  =  ( x  e.  RR  |->  1 ) )
75 0cnd 10033 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR )  ->  0  e.  CC )
7654, 29dvmptc 23721 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR  |->  1 ) )  =  ( x  e.  RR  |->  0 ) )
7754, 73, 71, 74, 71, 75, 76dvmptadd 23723 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR  |->  ( x  +  1 ) ) )  =  ( x  e.  RR  |->  ( 1  +  0 ) ) )
78 1p0e1 11133 . . . . . . . . 9  |-  ( 1  +  0 )  =  1
7978mpteq2i 4741 . . . . . . . 8  |-  ( x  e.  RR  |->  ( 1  +  0 ) )  =  ( x  e.  RR  |->  1 )
8077, 79syl6eq 2672 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR  |->  ( x  +  1 ) ) )  =  ( x  e.  RR  |->  1 ) )
8122a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  RR+  C_  RR )
8212tgioo2 22606 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
83 ioorp 12251 . . . . . . . . 9  |-  ( 0 (,) +oo )  = 
RR+
84 iooretop 22569 . . . . . . . . 9  |-  ( 0 (,) +oo )  e.  ( topGen `  ran  (,) )
8583, 84eqeltrri 2698 . . . . . . . 8  |-  RR+  e.  ( topGen `  ran  (,) )
8685a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  RR+ 
e.  ( topGen `  ran  (,) ) )
8754, 70, 71, 80, 81, 82, 12, 86dvmptres 23726 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR+  |->  ( x  +  1 ) ) )  =  ( x  e.  RR+  |->  1 ) )
88 dvrelog 24383 . . . . . . 7  |-  ( RR 
_D  ( log  |`  RR+ )
)  =  ( y  e.  RR+  |->  ( 1  /  y ) )
89 relogf1o 24313 . . . . . . . . . . 11  |-  ( log  |`  RR+ ) : RR+ -1-1-onto-> RR
90 f1of 6137 . . . . . . . . . . 11  |-  ( ( log  |`  RR+ ) :
RR+
-1-1-onto-> RR  ->  ( log  |`  RR+ ) : RR+ --> RR )
9189, 90mp1i 13 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log  |`  RR+ ) : RR+ --> RR )
9291feqmptd 6249 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log  |`  RR+ )  =  ( y  e.  RR+  |->  ( ( log  |`  RR+ ) `  y
) ) )
93 fvres 6207 . . . . . . . . . 10  |-  ( y  e.  RR+  ->  ( ( log  |`  RR+ ) `  y )  =  ( log `  y ) )
9493mpteq2ia 4740 . . . . . . . . 9  |-  ( y  e.  RR+  |->  ( ( log  |`  RR+ ) `  y ) )  =  ( y  e.  RR+  |->  ( log `  y ) )
9592, 94syl6eq 2672 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log  |`  RR+ )  =  ( y  e.  RR+  |->  ( log `  y
) ) )
9695oveq2d 6666 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  ( log  |`  RR+ ) )  =  ( RR  _D  (
y  e.  RR+  |->  ( log `  y ) ) ) )
9788, 96syl5reqr 2671 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
y  e.  RR+  |->  ( log `  y ) ) )  =  ( y  e.  RR+  |->  ( 1  / 
y ) ) )
98 fveq2 6191 . . . . . 6  |-  ( y  =  ( x  + 
1 )  ->  ( log `  y )  =  ( log `  (
x  +  1 ) ) )
99 oveq2 6658 . . . . . 6  |-  ( y  =  ( x  + 
1 )  ->  (
1  /  y )  =  ( 1  / 
( x  +  1 ) ) )
10054, 54, 58, 62, 65, 67, 87, 97, 98, 99dvmptco 23735 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR+  |->  ( log `  ( x  +  1 ) ) ) )  =  ( x  e.  RR+  |->  ( ( 1  /  ( x  + 
1 ) )  x.  1 ) ) )
10161rpcnd 11874 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 1  /  (
x  +  1 ) )  e.  CC )
102101mulid1d 10057 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( 1  / 
( x  +  1 ) )  x.  1 )  =  ( 1  /  ( x  + 
1 ) ) )
103102mpteq2dva 4744 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  RR+  |->  ( ( 1  / 
( x  +  1 ) )  x.  1 ) )  =  ( x  e.  RR+  |->  ( 1  /  ( x  + 
1 ) ) ) )
104100, 103eqtrd 2656 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR+  |->  ( log `  ( x  +  1 ) ) ) )  =  ( x  e.  RR+  |->  ( 1  / 
( x  +  1 ) ) ) )
105 ioossicc 12259 . . . . . . . . 9  |-  ( 0 (,) A )  C_  ( 0 [,] A
)
106105sseli 3599 . . . . . . . 8  |-  ( x  e.  ( 0 (,) A )  ->  x  e.  ( 0 [,] A
) )
107106, 7sylan2 491 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 (,) A ) )  ->  x  e.  RR )
108 eliooord 12233 . . . . . . . . 9  |-  ( x  e.  ( 0 (,) A )  ->  (
0  <  x  /\  x  <  A ) )
109108simpld 475 . . . . . . . 8  |-  ( x  e.  ( 0 (,) A )  ->  0  <  x )
110109adantl 482 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 (,) A ) )  ->  0  <  x )
111107, 110elrpd 11869 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 (,) A ) )  ->  x  e.  RR+ )
112111ex 450 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 (,) A )  ->  x  e.  RR+ ) )
113112ssrdv 3609 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 0 (,) A
)  C_  RR+ )
114 iooretop 22569 . . . . 5  |-  ( 0 (,) A )  e.  ( topGen `  ran  (,) )
115114a1i 11 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 0 (,) A
)  e.  ( topGen ` 
ran  (,) ) )
11654, 60, 61, 104, 113, 82, 12, 115dvmptres 23726 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  ( 0 (,) A )  |->  ( log `  ( x  +  1 ) ) ) )  =  ( x  e.  ( 0 (,) A )  |->  ( 1  /  ( x  +  1 ) ) ) )
117 elrege0 12278 . . . . . . . . 9  |-  ( x  e.  ( 0 [,) +oo )  <->  ( x  e.  RR  /\  0  <_  x ) )
1187, 8, 117sylanbrc 698 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 [,] A ) )  ->  x  e.  ( 0 [,) +oo ) )
119118ex 450 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A )  ->  x  e.  ( 0 [,) +oo )
) )
120119ssrdv 3609 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 0 [,] A
)  C_  ( 0 [,) +oo ) )
121120resabs1d 5428 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( sqr  |`  (
0 [,) +oo )
)  |`  ( 0 [,] A ) )  =  ( sqr  |`  (
0 [,] A ) ) )
122 sqrtf 14103 . . . . . . 7  |-  sqr : CC
--> CC
123122a1i 11 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  sqr : CC --> CC )
124123, 17feqresmpt 6250 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr  |`  ( 0 [,] A ) )  =  ( x  e.  ( 0 [,] A
)  |->  ( sqr `  x
) ) )
125121, 124eqtrd 2656 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( sqr  |`  (
0 [,) +oo )
)  |`  ( 0 [,] A ) )  =  ( x  e.  ( 0 [,] A ) 
|->  ( sqr `  x
) ) )
126 resqrtcn 24490 . . . . 5  |-  ( sqr  |`  ( 0 [,) +oo ) )  e.  ( ( 0 [,) +oo ) -cn-> RR )
127 rescncf 22700 . . . . 5  |-  ( ( 0 [,] A ) 
C_  ( 0 [,) +oo )  ->  ( ( sqr  |`  ( 0 [,) +oo ) )  e.  ( ( 0 [,) +oo ) -cn-> RR )  ->  ( ( sqr  |`  ( 0 [,) +oo ) )  |`  (
0 [,] A ) )  e.  ( ( 0 [,] A )
-cn-> RR ) ) )
128120, 126, 127mpisyl 21 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( sqr  |`  (
0 [,) +oo )
)  |`  ( 0 [,] A ) )  e.  ( ( 0 [,] A ) -cn-> RR ) )
129125, 128eqeltrrd 2702 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( x  e.  ( 0 [,] A ) 
|->  ( sqr `  x
) )  e.  ( ( 0 [,] A
) -cn-> RR ) )
130 rpcn 11841 . . . . . 6  |-  ( x  e.  RR+  ->  x  e.  CC )
131130adantl 482 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  x  e.  CC )
132131sqrtcld 14176 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( sqr `  x
)  e.  CC )
133 2rp 11837 . . . . . 6  |-  2  e.  RR+
134 rpsqrtcl 14005 . . . . . . 7  |-  ( x  e.  RR+  ->  ( sqr `  x )  e.  RR+ )
135134adantl 482 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( sqr `  x
)  e.  RR+ )
136 rpmulcl 11855 . . . . . 6  |-  ( ( 2  e.  RR+  /\  ( sqr `  x )  e.  RR+ )  ->  ( 2  x.  ( sqr `  x
) )  e.  RR+ )
137133, 135, 136sylancr 695 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 2  x.  ( sqr `  x ) )  e.  RR+ )
138137rpreccld 11882 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 1  /  (
2  x.  ( sqr `  x ) ) )  e.  RR+ )
139 dvsqrt 24483 . . . . 5  |-  ( RR 
_D  ( x  e.  RR+  |->  ( sqr `  x
) ) )  =  ( x  e.  RR+  |->  ( 1  /  (
2  x.  ( sqr `  x ) ) ) )
140139a1i 11 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  RR+  |->  ( sqr `  x ) ) )  =  ( x  e.  RR+  |->  ( 1  / 
( 2  x.  ( sqr `  x ) ) ) ) )
14154, 132, 138, 140, 113, 82, 12, 115dvmptres 23726 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( RR  _D  (
x  e.  ( 0 (,) A )  |->  ( sqr `  x ) ) )  =  ( x  e.  ( 0 (,) A )  |->  ( 1  /  ( 2  x.  ( sqr `  x
) ) ) ) )
142135rpred 11872 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( sqr `  x
)  e.  RR )
143 1re 10039 . . . . . . . . 9  |-  1  e.  RR
144 resubcl 10345 . . . . . . . . 9  |-  ( ( ( sqr `  x
)  e.  RR  /\  1  e.  RR )  ->  ( ( sqr `  x
)  -  1 )  e.  RR )
145142, 143, 144sylancl 694 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( sqr `  x
)  -  1 )  e.  RR )
146145sqge0d 13036 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  0  <_  ( (
( sqr `  x
)  -  1 ) ^ 2 ) )
147131sqsqrtd 14178 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( sqr `  x
) ^ 2 )  =  x )
148147oveq1d 6665 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( ( sqr `  x ) ^ 2 )  -  ( 2  x.  ( sqr `  x
) ) )  =  ( x  -  (
2  x.  ( sqr `  x ) ) ) )
149148oveq1d 6665 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( ( ( sqr `  x ) ^ 2 )  -  ( 2  x.  ( sqr `  x ) ) )  +  1 )  =  ( ( x  -  ( 2  x.  ( sqr `  x
) ) )  +  1 ) )
150 binom2sub1 12982 . . . . . . . . 9  |-  ( ( sqr `  x )  e.  CC  ->  (
( ( sqr `  x
)  -  1 ) ^ 2 )  =  ( ( ( ( sqr `  x ) ^ 2 )  -  ( 2  x.  ( sqr `  x ) ) )  +  1 ) )
151132, 150syl 17 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( ( sqr `  x )  -  1 ) ^ 2 )  =  ( ( ( ( sqr `  x
) ^ 2 )  -  ( 2  x.  ( sqr `  x
) ) )  +  1 ) )
152137rpcnd 11874 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 2  x.  ( sqr `  x ) )  e.  CC )
153131, 62, 152addsubd 10413 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( x  + 
1 )  -  (
2  x.  ( sqr `  x ) ) )  =  ( ( x  -  ( 2  x.  ( sqr `  x
) ) )  +  1 ) )
154149, 151, 1533eqtr4d 2666 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( ( sqr `  x )  -  1 ) ^ 2 )  =  ( ( x  +  1 )  -  ( 2  x.  ( sqr `  x ) ) ) )
155146, 154breqtrd 4679 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  0  <_  ( (
x  +  1 )  -  ( 2  x.  ( sqr `  x
) ) ) )
15658rpred 11872 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( x  +  1 )  e.  RR )
157137rpred 11872 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 2  x.  ( sqr `  x ) )  e.  RR )
158156, 157subge0d 10617 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 0  <_  (
( x  +  1 )  -  ( 2  x.  ( sqr `  x
) ) )  <->  ( 2  x.  ( sqr `  x
) )  <_  (
x  +  1 ) ) )
159155, 158mpbid 222 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 2  x.  ( sqr `  x ) )  <_  ( x  + 
1 ) )
160137, 58lerecd 11891 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( ( 2  x.  ( sqr `  x
) )  <_  (
x  +  1 )  <-> 
( 1  /  (
x  +  1 ) )  <_  ( 1  /  ( 2  x.  ( sqr `  x
) ) ) ) )
161159, 160mpbid 222 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  RR+ )  ->  ( 1  /  (
x  +  1 ) )  <_  ( 1  /  ( 2  x.  ( sqr `  x
) ) ) )
162111, 161syldan 487 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  x  e.  (
0 (,) A ) )  ->  ( 1  /  ( x  + 
1 ) )  <_ 
( 1  /  (
2  x.  ( sqr `  x ) ) ) )
163 rexr 10085 . . . 4  |-  ( A  e.  RR  ->  A  e.  RR* )
164 0xr 10086 . . . . 5  |-  0  e.  RR*
165 lbicc2 12288 . . . . 5  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  0  <_  A )  ->  0  e.  ( 0 [,] A
) )
166164, 165mp3an1 1411 . . . 4  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  0  e.  ( 0 [,] A
) )
167163, 166sylan 488 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  e.  ( 0 [,] A ) )
168 ubicc2 12289 . . . . 5  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  0  <_  A )  ->  A  e.  ( 0 [,] A
) )
169164, 168mp3an1 1411 . . . 4  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  e.  ( 0 [,] A
) )
170163, 169sylan 488 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  ( 0 [,] A ) )
171 simpr 477 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  <_  A )
172 oveq1 6657 . . . . . 6  |-  ( x  =  0  ->  (
x  +  1 )  =  ( 0  +  1 ) )
173 0p1e1 11132 . . . . . 6  |-  ( 0  +  1 )  =  1
174172, 173syl6eq 2672 . . . . 5  |-  ( x  =  0  ->  (
x  +  1 )  =  1 )
175174fveq2d 6195 . . . 4  |-  ( x  =  0  ->  ( log `  ( x  + 
1 ) )  =  ( log `  1
) )
176 log1 24332 . . . 4  |-  ( log `  1 )  =  0
177175, 176syl6eq 2672 . . 3  |-  ( x  =  0  ->  ( log `  ( x  + 
1 ) )  =  0 )
178 fveq2 6191 . . . 4  |-  ( x  =  0  ->  ( sqr `  x )  =  ( sqr `  0
) )
179 sqrt0 13982 . . . 4  |-  ( sqr `  0 )  =  0
180178, 179syl6eq 2672 . . 3  |-  ( x  =  0  ->  ( sqr `  x )  =  0 )
181 oveq1 6657 . . . 4  |-  ( x  =  A  ->  (
x  +  1 )  =  ( A  + 
1 ) )
182181fveq2d 6195 . . 3  |-  ( x  =  A  ->  ( log `  ( x  + 
1 ) )  =  ( log `  ( A  +  1 ) ) )
183 fveq2 6191 . . 3  |-  ( x  =  A  ->  ( sqr `  x )  =  ( sqr `  A
) )
1842, 3, 52, 116, 129, 141, 162, 167, 170, 171, 177, 180, 182, 183dvle 23770 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( log `  ( A  +  1 ) )  -  0 )  <_  ( ( sqr `  A )  -  0 ) )
185 ge0p1rp 11862 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  +  1 )  e.  RR+ )
186185relogcld 24369 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log `  ( A  +  1 ) )  e.  RR )
187 resqrtcl 13994 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  RR )
188186, 187, 2lesub1d 10634 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( log `  ( A  +  1 ) )  <_  ( sqr `  A )  <->  ( ( log `  ( A  + 
1 ) )  - 
0 )  <_  (
( sqr `  A
)  -  0 ) ) )
189184, 188mpbird 247 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( log `  ( A  +  1 ) )  <_  ( sqr `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    |` cres 5116   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   RR+crp 11832   (,)cioo 12175   [,)cico 12177   [,]cicc 12178   ^cexp 12860   sqrcsqrt 13973   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363   -cn->ccncf 22679    _D cdv 23627   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  rplogsumlem1  25173
  Copyright terms: Public domain W3C validator