MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mono Structured version   Visualization version   Unicode version

Theorem itg2mono 23520
Description: The Monotone Convergence Theorem for nonnegative functions. If  { ( F `
 n ) : n  e.  NN } is a monotone increasing sequence of positive, measurable, real-valued functions, and  G is the pointwise limit of the sequence, then  ( S.2 `  G
) is the limit of the sequence  { ( S.2 `  ( F `  n
) ) : n  e.  NN }. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1  |-  G  =  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  ) )
itg2mono.2  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e. MblFn
)
itg2mono.3  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n ) : RR --> ( 0 [,) +oo ) )
itg2mono.4  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  oR  <_  ( F `  ( n  +  1 ) ) )
itg2mono.5  |-  ( (
ph  /\  x  e.  RR )  ->  E. y  e.  RR  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
)
itg2mono.6  |-  S  =  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  )
Assertion
Ref Expression
itg2mono  |-  ( ph  ->  ( S.2 `  G
)  =  S )
Distinct variable groups:    x, n, y, G    n, F, x, y    ph, n, x, y    S, n, x, y

Proof of Theorem itg2mono
Dummy variables  f  m  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mono.1 . . . . . . . 8  |-  G  =  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  ) )
2 itg2mono.2 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e. MblFn
)
32adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  G )  /\  -.  ( S.1 `  f
)  <_  S )
)  /\  n  e.  NN )  ->  ( F `
 n )  e. MblFn
)
4 itg2mono.3 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n ) : RR --> ( 0 [,) +oo ) )
54adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  G )  /\  -.  ( S.1 `  f
)  <_  S )
)  /\  n  e.  NN )  ->  ( F `
 n ) : RR --> ( 0 [,) +oo ) )
6 itg2mono.4 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  oR  <_  ( F `  ( n  +  1 ) ) )
76adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  G )  /\  -.  ( S.1 `  f
)  <_  S )
)  /\  n  e.  NN )  ->  ( F `
 n )  oR  <_  ( F `  ( n  +  1 ) ) )
8 itg2mono.5 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  E. y  e.  RR  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
)
98adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  (
( f  e.  dom  S.1 
/\  f  oR  <_  G )  /\  -.  ( S.1 `  f
)  <_  S )
)  /\  x  e.  RR )  ->  E. y  e.  RR  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
)
10 itg2mono.6 . . . . . . . 8  |-  S  =  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  )
11 simprll 802 . . . . . . . 8  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  G )  /\  -.  ( S.1 `  f )  <_  S ) )  ->  f  e.  dom  S.1 )
12 simprlr 803 . . . . . . . 8  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  G )  /\  -.  ( S.1 `  f )  <_  S ) )  ->  f  oR  <_  G )
13 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  G )  /\  -.  ( S.1 `  f )  <_  S ) )  ->  -.  ( S.1 `  f )  <_  S
)
141, 3, 5, 7, 9, 10, 11, 12, 13itg2monolem3 23519 . . . . . . 7  |-  ( (
ph  /\  ( (
f  e.  dom  S.1  /\  f  oR  <_  G )  /\  -.  ( S.1 `  f )  <_  S ) )  ->  ( S.1 `  f
)  <_  S )
1514expr 643 . . . . . 6  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  G ) )  ->  ( -.  ( S.1 `  f )  <_  S  ->  ( S.1 `  f )  <_  S ) )
1615pm2.18d 124 . . . . 5  |-  ( (
ph  /\  ( f  e.  dom  S.1  /\  f  oR  <_  G ) )  ->  ( S.1 `  f )  <_  S
)
1716expr 643 . . . 4  |-  ( (
ph  /\  f  e.  dom  S.1 )  ->  (
f  oR  <_  G  ->  ( S.1 `  f
)  <_  S )
)
1817ralrimiva 2966 . . 3  |-  ( ph  ->  A. f  e.  dom  S.1 ( f  oR  <_  G  ->  ( S.1 `  f )  <_  S ) )
19 rge0ssre 12280 . . . . . . . . . . . . 13  |-  ( 0 [,) +oo )  C_  RR
20 fss 6056 . . . . . . . . . . . . 13  |-  ( ( ( F `  n
) : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  RR )  -> 
( F `  n
) : RR --> RR )
214, 19, 20sylancl 694 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n ) : RR --> RR )
2221ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  RR )  ->  (
( F `  n
) `  x )  e.  RR )
2322an32s 846 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  n  e.  NN )  ->  (
( F `  n
) `  x )  e.  RR )
24 eqid 2622 . . . . . . . . . 10  |-  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) )  =  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) )
2523, 24fmptd 6385 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) : NN --> RR )
26 frn 6053 . . . . . . . . 9  |-  ( ( n  e.  NN  |->  ( ( F `  n
) `  x )
) : NN --> RR  ->  ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  C_  RR )
2725, 26syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  C_  RR )
28 1nn 11031 . . . . . . . . . . 11  |-  1  e.  NN
2924, 23dmmptd 6024 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  dom  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  =  NN )
3028, 29syl5eleqr 2708 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  1  e. 
dom  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) )
31 ne0i 3921 . . . . . . . . . 10  |-  ( 1  e.  dom  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) )  ->  dom  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) )  =/=  (/) )
3230, 31syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  dom  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  =/=  (/) )
33 dm0rn0 5342 . . . . . . . . . 10  |-  ( dom  ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  =  (/)  <->  ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  =  (/) )
3433necon3bii 2846 . . . . . . . . 9  |-  ( dom  ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  =/=  (/)  <->  ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) )  =/=  (/) )
3532, 34sylib 208 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  =/=  (/) )
36 ffn 6045 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  |->  ( ( F `  n
) `  x )
) : NN --> RR  ->  ( n  e.  NN  |->  ( ( F `  n
) `  x )
)  Fn  NN )
3725, 36syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) )  Fn  NN )
38 breq1 4656 . . . . . . . . . . . . 13  |-  ( z  =  ( ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) `
 m )  -> 
( z  <_  y  <->  ( ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  m
)  <_  y )
)
3938ralrn 6362 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  |->  ( ( F `  n
) `  x )
)  Fn  NN  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) z  <_ 
y  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) `  m )  <_  y
) )
4037, 39syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) z  <_  y  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) `
 m )  <_ 
y ) )
41 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  ( F `  n )  =  ( F `  m ) )
4241fveq1d 6193 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
( F `  n
) `  x )  =  ( ( F `
 m ) `  x ) )
43 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( ( F `  m ) `
 x )  e. 
_V
4442, 24, 43fvmpt 6282 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  m
)  =  ( ( F `  m ) `
 x ) )
4544breq1d 4663 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  (
( ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) `  m )  <_  y  <->  ( ( F `  m
) `  x )  <_  y ) )
4645ralbiia 2979 . . . . . . . . . . . 12  |-  ( A. m  e.  NN  (
( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  m
)  <_  y  <->  A. m  e.  NN  ( ( F `
 m ) `  x )  <_  y
)
4742breq1d 4663 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( ( F `  n ) `  x
)  <_  y  <->  ( ( F `  m ) `  x )  <_  y
) )
4847cbvralv 3171 . . . . . . . . . . . 12  |-  ( A. n  e.  NN  (
( F `  n
) `  x )  <_  y  <->  A. m  e.  NN  ( ( F `  m ) `  x
)  <_  y )
4946, 48bitr4i 267 . . . . . . . . . . 11  |-  ( A. m  e.  NN  (
( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  m
)  <_  y  <->  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
)
5040, 49syl6bb 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) z  <_  y  <->  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
) )
5150rexbidv 3052 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( E. y  e.  RR  A. z  e.  ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) z  <_  y  <->  E. y  e.  RR  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
) )
528, 51mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  E. y  e.  RR  A. z  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) z  <_  y )
53 suprcl 10983 . . . . . . . 8  |-  ( ( ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) )  C_  RR  /\  ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) z  <_  y )  ->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  )  e.  RR )
5427, 35, 52, 53syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  )  e.  RR )
5554rexrd 10089 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  )  e.  RR* )
56 0red 10041 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  0  e.  RR )
574ralrimiva 2966 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( F `  n ) : RR --> ( 0 [,) +oo ) )
58 fveq2 6191 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  ( F `  n )  =  ( F ` 
1 ) )
5958feq1d 6030 . . . . . . . . . . . 12  |-  ( n  =  1  ->  (
( F `  n
) : RR --> ( 0 [,) +oo )  <->  ( F `  1 ) : RR --> ( 0 [,) +oo ) ) )
6059rspcv 3305 . . . . . . . . . . 11  |-  ( 1  e.  NN  ->  ( A. n  e.  NN  ( F `  n ) : RR --> ( 0 [,) +oo )  -> 
( F `  1
) : RR --> ( 0 [,) +oo ) ) )
6128, 57, 60mpsyl 68 . . . . . . . . . 10  |-  ( ph  ->  ( F `  1
) : RR --> ( 0 [,) +oo ) )
6261ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  1 ) `
 x )  e.  ( 0 [,) +oo ) )
63 elrege0 12278 . . . . . . . . 9  |-  ( ( ( F `  1
) `  x )  e.  ( 0 [,) +oo ) 
<->  ( ( ( F `
 1 ) `  x )  e.  RR  /\  0  <_  ( ( F `  1 ) `  x ) ) )
6462, 63sylib 208 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( ( F `  1
) `  x )  e.  RR  /\  0  <_ 
( ( F ` 
1 ) `  x
) ) )
6564simpld 475 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  1 ) `
 x )  e.  RR )
6664simprd 479 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( ( F ` 
1 ) `  x
) )
6758fveq1d 6193 . . . . . . . . . . 11  |-  ( n  =  1  ->  (
( F `  n
) `  x )  =  ( ( F `
 1 ) `  x ) )
68 fvex 6201 . . . . . . . . . . 11  |-  ( ( F `  1 ) `
 x )  e. 
_V
6967, 24, 68fvmpt 6282 . . . . . . . . . 10  |-  ( 1  e.  NN  ->  (
( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  1
)  =  ( ( F `  1 ) `
 x ) )
7028, 69ax-mp 5 . . . . . . . . 9  |-  ( ( n  e.  NN  |->  ( ( F `  n
) `  x )
) `  1 )  =  ( ( F `
 1 ) `  x )
71 fnfvelrn 6356 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  Fn  NN  /\  1  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) `
 1 )  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) )
7237, 28, 71sylancl 694 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( n  e.  NN  |->  ( ( F `  n
) `  x )
) `  1 )  e.  ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) )
7370, 72syl5eqelr 2706 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  1 ) `
 x )  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) )
74 suprub 10984 . . . . . . . 8  |-  ( ( ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) 
C_  RR  /\  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) z  <_  y )  /\  ( ( F ` 
1 ) `  x
)  e.  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) )  ->  (
( F `  1
) `  x )  <_  sup ( ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) ,  RR ,  <  ) )
7527, 35, 52, 73, 74syl31anc 1329 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  1 ) `
 x )  <_  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  ) )
7656, 65, 54, 66, 75letrd 10194 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  ) )
77 elxrge0 12281 . . . . . 6  |-  ( sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  )  e.  ( 0 [,] +oo )  <->  ( sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  )  e.  RR*  /\  0  <_  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  ) ) )
7855, 76, 77sylanbrc 698 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  )  e.  ( 0 [,] +oo )
)
7978, 1fmptd 6385 . . . 4  |-  ( ph  ->  G : RR --> ( 0 [,] +oo ) )
80 icossicc 12260 . . . . . . . . . 10  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
81 fss 6056 . . . . . . . . . 10  |-  ( ( ( F `  n
) : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )  ->  ( F `  n ) : RR --> ( 0 [,] +oo ) )
824, 80, 81sylancl 694 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n ) : RR --> ( 0 [,] +oo ) )
83 itg2cl 23499 . . . . . . . . 9  |-  ( ( F `  n ) : RR --> ( 0 [,] +oo )  -> 
( S.2 `  ( F `
 n ) )  e.  RR* )
8482, 83syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( S.2 `  ( F `  n
) )  e.  RR* )
85 eqid 2622 . . . . . . . 8  |-  ( n  e.  NN  |->  ( S.2 `  ( F `  n
) ) )  =  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )
8684, 85fmptd 6385 . . . . . . 7  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) : NN --> RR* )
87 frn 6053 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) : NN --> RR*  ->  ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  C_  RR* )
8886, 87syl 17 . . . . . 6  |-  ( ph  ->  ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) )  C_  RR* )
89 supxrcl 12145 . . . . . 6  |-  ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  C_  RR*  ->  sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) ,  RR* ,  <  )  e.  RR* )
9088, 89syl 17 . . . . 5  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  )  e.  RR* )
9110, 90syl5eqel 2705 . . . 4  |-  ( ph  ->  S  e.  RR* )
92 itg2leub 23501 . . . 4  |-  ( ( G : RR --> ( 0 [,] +oo )  /\  S  e.  RR* )  -> 
( ( S.2 `  G
)  <_  S  <->  A. f  e.  dom  S.1 ( f  oR  <_  G  ->  ( S.1 `  f )  <_  S ) ) )
9379, 91, 92syl2anc 693 . . 3  |-  ( ph  ->  ( ( S.2 `  G
)  <_  S  <->  A. f  e.  dom  S.1 ( f  oR  <_  G  ->  ( S.1 `  f )  <_  S ) ) )
9418, 93mpbird 247 . 2  |-  ( ph  ->  ( S.2 `  G
)  <_  S )
9541feq1d 6030 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
( F `  n
) : RR --> ( 0 [,) +oo )  <->  ( F `  m ) : RR --> ( 0 [,) +oo ) ) )
9695cbvralv 3171 . . . . . . . . . 10  |-  ( A. n  e.  NN  ( F `  n ) : RR --> ( 0 [,) +oo )  <->  A. m  e.  NN  ( F `  m ) : RR --> ( 0 [,) +oo ) )
9757, 96sylib 208 . . . . . . . . 9  |-  ( ph  ->  A. m  e.  NN  ( F `  m ) : RR --> ( 0 [,) +oo ) )
9897r19.21bi 2932 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m ) : RR --> ( 0 [,) +oo ) )
99 fss 6056 . . . . . . . 8  |-  ( ( ( F `  m
) : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )  ->  ( F `  m ) : RR --> ( 0 [,] +oo ) )
10098, 80, 99sylancl 694 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m ) : RR --> ( 0 [,] +oo ) )
10179adantr 481 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  G : RR
--> ( 0 [,] +oo ) )
10227, 35, 523jca 1242 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  C_  RR  /\ 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) z  <_  y ) )
103102adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  C_  RR  /\ 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) z  <_  y ) )
10444ad2antlr 763 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  (
( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  m
)  =  ( ( F `  m ) `
 x ) )
10537adantlr 751 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  Fn  NN )
106 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  m  e.  NN )
107 fnfvelrn 6356 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN  |->  ( ( F `  n ) `  x
) )  Fn  NN  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) `
 m )  e. 
ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) )
108105, 106, 107syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  (
( n  e.  NN  |->  ( ( F `  n ) `  x
) ) `  m
)  e.  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) )
109104, 108eqeltrrd 2702 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  (
( F `  m
) `  x )  e.  ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) )
110 suprub 10984 . . . . . . . . . . . 12  |-  ( ( ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) 
C_  RR  /\  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
)  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ran  ( n  e.  NN  |->  ( ( F `
 n ) `  x ) ) z  <_  y )  /\  ( ( F `  m ) `  x
)  e.  ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) )  ->  (
( F `  m
) `  x )  <_  sup ( ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) ,  RR ,  <  ) )
111103, 109, 110syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  (
( F `  m
) `  x )  <_  sup ( ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) ,  RR ,  <  ) )
112 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  x  e.  RR )
113 ltso 10118 . . . . . . . . . . . . 13  |-  <  Or  RR
114113supex 8369 . . . . . . . . . . . 12  |-  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  )  e.  _V
1151fvmpt2 6291 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  )  e.  _V )  -> 
( G `  x
)  =  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `  x
) ) ,  RR ,  <  ) )
116112, 114, 115sylancl 694 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  ( G `  x )  =  sup ( ran  (
n  e.  NN  |->  ( ( F `  n
) `  x )
) ,  RR ,  <  ) )
117111, 116breqtrrd 4681 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  RR )  ->  (
( F `  m
) `  x )  <_  ( G `  x
) )
118117ralrimiva 2966 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  A. x  e.  RR  ( ( F `
 m ) `  x )  <_  ( G `  x )
)
119 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( F `  m
) `  x )  =  ( ( F `
 m ) `  z ) )
120 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
121119, 120breq12d 4666 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( ( F `  m ) `  x
)  <_  ( G `  x )  <->  ( ( F `  m ) `  z )  <_  ( G `  z )
) )
122121cbvralv 3171 . . . . . . . . 9  |-  ( A. x  e.  RR  (
( F `  m
) `  x )  <_  ( G `  x
)  <->  A. z  e.  RR  ( ( F `  m ) `  z
)  <_  ( G `  z ) )
123118, 122sylib 208 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  A. z  e.  RR  ( ( F `
 m ) `  z )  <_  ( G `  z )
)
124 ffn 6045 . . . . . . . . . 10  |-  ( ( F `  m ) : RR --> ( 0 [,] +oo )  -> 
( F `  m
)  Fn  RR )
125100, 124syl 17 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  Fn  RR )
12654, 1fmptd 6385 . . . . . . . . . . 11  |-  ( ph  ->  G : RR --> RR )
127 ffn 6045 . . . . . . . . . . 11  |-  ( G : RR --> RR  ->  G  Fn  RR )
128126, 127syl 17 . . . . . . . . . 10  |-  ( ph  ->  G  Fn  RR )
129128adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  G  Fn  RR )
130 reex 10027 . . . . . . . . . 10  |-  RR  e.  _V
131130a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  RR  e.  _V )
132 inidm 3822 . . . . . . . . 9  |-  ( RR 
i^i  RR )  =  RR
133 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  z  e.  RR )  ->  (
( F `  m
) `  z )  =  ( ( F `
 m ) `  z ) )
134 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  z  e.  RR )  ->  ( G `  z )  =  ( G `  z ) )
135125, 129, 131, 131, 132, 133, 134ofrfval 6905 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( F `  m )  oR  <_  G  <->  A. z  e.  RR  (
( F `  m
) `  z )  <_  ( G `  z
) ) )
136123, 135mpbird 247 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  oR  <_  G )
137 itg2le 23506 . . . . . . 7  |-  ( ( ( F `  m
) : RR --> ( 0 [,] +oo )  /\  G : RR --> ( 0 [,] +oo )  /\  ( F `  m )  oR  <_  G
)  ->  ( S.2 `  ( F `  m
) )  <_  ( S.2 `  G ) )
138100, 101, 136, 137syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( S.2 `  ( F `  m
) )  <_  ( S.2 `  G ) )
139138ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. m  e.  NN  ( S.2 `  ( F `
 m ) )  <_  ( S.2 `  G
) )
140 ffn 6045 . . . . . . . 8  |-  ( ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) : NN --> RR*  ->  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  Fn  NN )
14186, 140syl 17 . . . . . . 7  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  Fn  NN )
142 breq1 4656 . . . . . . . 8  |-  ( z  =  ( ( n  e.  NN  |->  ( S.2 `  ( F `  n
) ) ) `  m )  ->  (
z  <_  ( S.2 `  G )  <->  ( (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) `  m )  <_  ( S.2 `  G
) ) )
143142ralrn 6362 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  Fn  NN  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) z  <_  ( S.2 `  G )  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( S.2 `  ( F `  n
) ) ) `  m )  <_  ( S.2 `  G ) ) )
144141, 143syl 17 . . . . . 6  |-  ( ph  ->  ( A. z  e. 
ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) z  <_ 
( S.2 `  G )  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) `  m
)  <_  ( S.2 `  G ) ) )
14541fveq2d 6195 . . . . . . . . 9  |-  ( n  =  m  ->  ( S.2 `  ( F `  n ) )  =  ( S.2 `  ( F `  m )
) )
146 fvex 6201 . . . . . . . . 9  |-  ( S.2 `  ( F `  m
) )  e.  _V
147145, 85, 146fvmpt 6282 . . . . . . . 8  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) `  m )  =  ( S.2 `  ( F `  m )
) )
148147breq1d 4663 . . . . . . 7  |-  ( m  e.  NN  ->  (
( ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) `  m
)  <_  ( S.2 `  G )  <->  ( S.2 `  ( F `  m
) )  <_  ( S.2 `  G ) ) )
149148ralbiia 2979 . . . . . 6  |-  ( A. m  e.  NN  (
( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) `  m )  <_  ( S.2 `  G
)  <->  A. m  e.  NN  ( S.2 `  ( F `
 m ) )  <_  ( S.2 `  G
) )
150144, 149syl6bb 276 . . . . 5  |-  ( ph  ->  ( A. z  e. 
ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) z  <_ 
( S.2 `  G )  <->  A. m  e.  NN  ( S.2 `  ( F `
 m ) )  <_  ( S.2 `  G
) ) )
151139, 150mpbird 247 . . . 4  |-  ( ph  ->  A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) z  <_  ( S.2 `  G ) )
152 itg2cl 23499 . . . . . 6  |-  ( G : RR --> ( 0 [,] +oo )  -> 
( S.2 `  G )  e.  RR* )
15379, 152syl 17 . . . . 5  |-  ( ph  ->  ( S.2 `  G
)  e.  RR* )
154 supxrleub 12156 . . . . 5  |-  ( ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) )  C_  RR*  /\  ( S.2 `  G )  e. 
RR* )  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n
) ) ) , 
RR* ,  <  )  <_ 
( S.2 `  G )  <->  A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) z  <_  ( S.2 `  G ) ) )
15588, 153, 154syl2anc 693 . . . 4  |-  ( ph  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  )  <_  ( S.2 `  G
)  <->  A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) z  <_  ( S.2 `  G ) ) )
156151, 155mpbird 247 . . 3  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  )  <_  ( S.2 `  G
) )
15710, 156syl5eqbr 4688 . 2  |-  ( ph  ->  S  <_  ( S.2 `  G ) )
158 xrletri3 11985 . . 3  |-  ( ( ( S.2 `  G
)  e.  RR*  /\  S  e.  RR* )  ->  (
( S.2 `  G )  =  S  <->  ( ( S.2 `  G )  <_  S  /\  S  <_  ( S.2 `  G ) ) ) )
159153, 91, 158syl2anc 693 . 2  |-  ( ph  ->  ( ( S.2 `  G
)  =  S  <->  ( ( S.2 `  G )  <_  S  /\  S  <_  ( S.2 `  G ) ) ) )
16094, 157, 159mpbir2and 957 1  |-  ( ph  ->  ( S.2 `  G
)  =  S )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oRcofr 6896   supcsup 8346   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   NNcn 11020   [,)cico 12177   [,]cicc 12178  MblFncmbf 23383   S.1citg1 23384   S.2citg2 23385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390
This theorem is referenced by:  itg2i1fseq  23522  itg2cnlem1  23528
  Copyright terms: Public domain W3C validator